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Goal Statement 

• The goal of the project is to develop a synthetic 
yeast consortium for direct fermentation of 
cellulose to ethanol, a key program goal for the 
Biochemical platform. The strategy proposed 
here emphasizes the efficiency of hydrolysis and 
synergy among multi-cellulases, rather than 
focusing on the amount of enzymes produced or 
used. 
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Quad Chart Overview 

• Project start date – 10/1/09 
• Project end date – 6/30/13 
• Percent complete – 80% 

• Barriers addressed 
– Feedstocks and Biochemcal. 

• Total project funding 
– DOE share – $599,966 
– Contractor share -$152,870 

Timeline 

Budget 

Barriers 

• Wilfred Chen is the overall project 
manager 

Partners 



Project Overview 

• The overall objective is to emulate the 
success of a natural cellulose hydrolysis 
mechanism.  A complex cellulosome 
structure will be assembled onto the yeast 
cell surface using a synthetic consortium, 
which will enable the ethanol-producing 
strains to utilize cellulose and concomitantly 
ferment the sugars to ethanol.  
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Approach 

• The engineering strategy proposed emphasizes the efficiency 
of hydrolysis and synergy among cellulases, rather than 
focusing on the amount of enzymes produced or used. To 
emulate the natural cellulosomes for efficient cellulose 
hydrolysis, complex cellulosomes will be assembled on the 
yeast cell surface, enabling the efficient production of ethanol 
from cellulose. More importantly, by organizing these 
cellulases in an ordered structure, the enhanced synergy will 
increase the efficiency in hydrolysis, and thereby enhance 
ethanol production. The use of a single yeast strain for surface 
anchoring and cellulase secretion is unlikely to be successful 
again based on bioenergetic limitations. To solve this problem, 
a synthetic yeast consortium will be developed for the 
functional presentation of the complex cellulosome structures. 



Problems with current systems 

Lynd et al., Curr Opin Biotechnol, 2005 

COST 



Two Possible Approaches 

Slow hydrolysis rate of cellulose as high-level 
secretion of cellulase in a good ethanol producer is 
energetically unfavorable under anaerobic 
condition 

•Mimic natural anaerobic mechanism - Cellulosome  

Good cellulolytic microorganisms  

                  Good ethanol producers 



1. A surface-bound enzyme complex found in anaerobic 

microbes          

2. Hydrolyze cellulose up to 50-fold faster due to synergy 

3.   Assembly based on the specific interaction between 

dockerin to cohesin specific 

Bayer et al.,  2006 

Cellulosome 

Haimovitz et al., Proteomics, 2008  
Ding et al., Curr Opin Biotechnol, 2008 

Olson et al, 2010 



Assembly a functional cellulosome on the surface of 
S. cerevisiae and demonstrate the ability of the 
engineered strain for direct ethanol production from 
cellulose 
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Scaffoldin Displaying Yeast and Cellulase 

Overexpressing E. coli 

•An Exoglucanase CelE fused with 
a Dockerin from C. cellulolyticum 

•An Endoglucanase CelA fused with 
a Dockerin from C. thermocellum 

•An Endoglucanase CelG fused 
with a Dockerin from R. 
flavefacoens 

•C-myc 
tag 

•Cohesin from C. cellulolyticum 

•Cohesin from C. thermocellum 

•Cellulose binding domain •Cohesin from R.  
•flavefacoens 

•Ec 

•At 

•BglA 

•Tsai et al., Applied and Environmental Microbiology, 2009 



Functionality of Mini-cellulosomes 



Synergistic Effects of Mini-cellulosomes 

Maximum Synergy a 
One Two Three 

1.70 2.06 2.64 

a.  
enzymesfreefromsugarducing
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

b.  The same combination of cellulases but without scaffoldin. 



Resting cell ethanol production 
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Engineer a super yeast 

YEASTYEAST

C-myc Tag

•His6 Tag 

•His6 Tag 

•His6 Tag 

•His6 Tag 

•His6 Tag 

•His6 Tag 

•secretio
n 

•Disadvantages: 

• jamming of the 
translocation 
machinery 
 

• energy intensive 
particularly under 
anaerobic growth 



A Consortium Displaying At, Ec and Bglf 

•YEAST 

YEASTYEAST

C-myc Tag

•YEAST 

•YEAST 

•His6 Tag 

•His6 Tag 

•His6 Tag 

•Exo-
glucanase (Ec) 

•Endo-
glucanase (At) 

•ß-
glucosidase  
(Bglf) 

Advantages: 

• Lower metabolic load 
• Modular – ratio and type 
• Combine different functions 
 



Synthetic Consortia 
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Can we use the consortium for CBP? 

YEAST

YEASTYEAST
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His6 Tag

Goyal et al., Microbial Cell Factories, 2011 



Display of scaffoldin using Aga1 
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Display of a pentavalent scaffoldin 
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Translocation and folding problems 



Improving enzyme density by Adaptive Assembly 

Anchoring Scaffoldin 

Adaptor Scaffoldin 

Bayer et al, 2008 
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Tsai et al., ACS Synthetic Biology, 2013.  



Dockerin-tagged enzymes 

b-glucosidase BglA         Endoglucanase CelG 

                  Bglf             Gt 

Dockerin from R. 
flavefaciens 

Dockerin from C. 
thermocellum 

 Gal et al, J Bacteriol, 1997 



Hydrolysis of cellulose to glucose 
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Xylanosome: Enzymes 
 

 Hemicellulase system: Fungal thermostable enzymes, recombinantly expressed in S. 

cerevisiae 

                =       Endo-β-1,4 xylanase (XynA) from T. lanuginosus (literature: P. pastoris host) 

                =       Acetylxylan esterase (AwAXE) from A. awamori  (literature:  P. pastoris host) 

                =       β- xylosidase (XlnD) from A. niger (literature: E.coli; A. awamori hosts) 

Substrate for hydrolysis = Birchwood Xylan (Maximal acetic acid substitutions) 

 

Ref: “Xylanolytic Enzymes from Fungi and Bacteria”, A. Sunna and G. Antranikien, Critical Reviews in Biotechnology, 17( 1):39-67 (1997) 



Comparison between binding domains 

- To compare the effect of A2 (xylan-binding) domain with C. 

thermocellum cellulose binding domain. 

  

    tfc                                      tfcXBD                                    tfcCBD 

Srikrishnan et al. Biotechnol. Bioeng., 110, 275–285, 2013 



        

Confirmed enzyme activity on scaffoldins: 
 Study between binding domains, XBD and CBD  
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Conclusions from hydrolysis study 
 “tfcXBD” system shows improved hydrolysis over free enzymes 

    

     

     

    

     

     

    

     

     

Enzymes loaded Reducing sugars released in mg L-1 Fold synergy compared 
to free enzyme 

Free enzyme  tfc(a) tfcXBD(b) tfcCBD(c) (a) (b) (c) 

XynA 214 ± 18 233 ± 16 389 ± 11 308 ± 18 1.1 x 1.8 x 1.4 x 

XynA XlnD 324 ± 23 420 ± 10 699 ± 14 537 ± 13 1.3 x 2.2 x 1.7 x 

XynA XlnD AwAXE 476 ± 17 740 ± 12 1575 ± 17 1127 ± 19 1.6 x 3.3 x 2.4 x 

Fold synergy due to binding module 1 x 2.1 x 1.5 x       

- XynA shows 1.4- 1.8x increased activity with binding module (CBD or XBD) 
- tfc XBD shows ~ 3.3x improvement in hydrolysis over free enzymes (tri-enzyme)  
- tfc XBD shows ~ 1.4x improvement in hydrolysis over tfc CBD (tri-enzyme) 
- Synergy observed due to enzyme proximity for tfc is ~1.6 x (tri-enzyme) 
- Synergy observed due to binding module for tfcXBD is ~2.1x (tri-enzyme) 
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Technical Accomplishments/ 

Progress/Results 

• Task 1: Functional assembly of mini-cellulosomes on the yeast 
surface for cellulose hydrolysis – A paper describing this has 
been published in AEM 

• Task 2: Develop a yeast consortium displaying mini-
cellulosomes for cellulose hydrolysis by intracellular 
complementation – A paper describing this has been published 
in AEM 

• Task 3: Construction of synthetic yeast consortium displaying 
the mini-cellulosome for the simultaneous cellulose hydrolysis 
and ethanol production – A paper describing this has been 
published in Microbial Cell Factories 

• Task 4: A yeast strain displaying a complex cellulosome was 
developed using adaptive assembly – A paper describing this 
has been published in ACS Synthetic Biology 
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Technical Accomplishments/ 
Progress/Results 

• For the first time, a functional mini-cellulosome was 
successfully assembled on the yeast surface 
 

• The engineered yeast strains were able to retain the synergistic 
effect on cellulose hydrolysis, to produce simple sugars, and 
to produce ethanol 
 

• A yeast consortium was engineered to display a functional 
mini-cellulosome  
 

• The yeast consortium can grow and produce ethanol directly 
from cellulose more efficiently than cells secreting only 
enzymes 
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Relevance 

• A potentially useful way for ethanol production from cellulosic 
biomass using  the consolidated bioprocessing approach 
 

• Successful display of a complex cellulosome could greatly 
enhance the overall efficiency and cost of ethanol production 
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Success Factors and Challenges  

• The ability of the surface displayed cellulosomes to retain the 
synergistic effect on cellulose hydrolysis is the most critical 
factor for the successful implementation of the approach 
 

• The ability to secrete multiple cellulases and adaptor 
scaffoldins is the key to the assembly of the complex 
cellulosome 
 

• This strategy may be a logical first step toward a CBP 
approach for ethanol production from cellulosic biomass 
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Future Work 

• Construction of yeast strains secreting the the 
adaptor scaffoldins and /or dockerin-tagged 
cellulases 
 

• Display of more complex cellulosomes via sortase 
A-mediated ligation 
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Summary 

 

– Relevance: Successful display of a complex cellulosome could 
greatly enhance the overall efficiency and cost of ethanol 
production 

– Approach: Design a yeast consortium for the display of the 

complex cellulosome 

– Technical accomplishments: For the first, a functional mini-

cellulosome was successfully assembled on the yeast surface 

– Success factors and challenges: The ability of the surface 
displayed cellulosomes to retain the synergistic effect on 
cellulose hydrolysis is the most critical factor for the successful 
implementation of the approach 

– Technology transfer and future work: Display of complex 
cellulosomes 
 

 



38 

Additional Slides 
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Publications and Presentations 

1. Shen-Long Tsai, Garima Goyal, and Wilfred Chen, Surface display of a functional 
mini-cellulosome by intracellular complementation using a synthetic yeast 
consortium: Application for cellulose hydrolysis and ethanol production, Appl. 

Environ. Microbiol., 76, 7514-7520, 2010. 
2. Shen-Long Tsai, Jeongseok Oh, Shailendra Singh, Ruizhen Chen, and Wilfred Chen, 

Functional assembly of mini-cellulosomes on the yeast surface for cellulose 
hydrolysis and ethanol production, Appl. Environ. Microbiol., 75, 6087-6093, 2009. 

3. Garima Goyal, Shen Long Tsai, Bhawna Madan, Nancy A. DaSilva, and Wilfred 
Chen, Simultaneous cell growth and ethanol production from cellulose by an 
engineered yeast consortium displaying a functional mini-cellulosome, Microb. Cell 

Factories, 10, 89, 2011. 
4. Shen-Long Tsai, Nancy A. DaSilva, and Wilfred Chen, Functional display of complex 

cellulosomes on the yeast surface via adaptive assembly, ACS Synthetic Biology, 2, 
14-21, 2013. 

Note:  This slide is for the use of the Peer Reviewers only – it is not to 
be presented as part of your oral presentation.  These Additional Slides 
will be included in the copy of your presentation that will be made 
available to the Reviewers. 
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