2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

Refinery Upgrading of Hydropyrolysis Oil from Biomass

May 23, 2012 Bio-Oil Technology Area Review

> Terry Marker GTI

Project Goals and Objectives

- Develop a cost effective route for converting biomass to transportation fuels by
 - Converting biomass to hydropyrolysis oil
 - Upgrading the hydropyrolysis oil in a petroleum refinery using existing refinery equipment
 - Working closely with a major petroleum refining company to develop the best integration
 - Developing a preliminary engineering design for a hydropyrolysis pilot and commercial scale facility to be located next to a Valero refinery
 - Developing an engineering design package for locating a hydropyrolysis unit converting cornstover at one of Valero's 10 midwest corn ethanol plants
 - Comparing risk versus benefits from a refiners point of view for Integrated hydropyrolysis and hydroconversion (IH²) vs hydropyrolysis plus refinery upgrading

Selected from FOA DE-FOA-0000686 Bio-Oil Stabilization and Commoditization 2

Project Quad Chart Overview

Timeline

- Jan 2013
- April 2016
- 8.7% spent project just started

Budget

- Total \$4.1MM, \$3.2MM DOE,\$.88MM CS
- 2013 to date \$356K, \$280K DOE, \$74K CS
- 3 years funding,\$1.4MM/year

Barriers

- Barriers addressed
 - Pyrolysis of Biomass and Bio-OilStabilization

Partners & Roles

 GTI,CRI Catalyst, Valero, Johnson Timber, Cargill, MTU

Refinery Upgrading of Hydropyrolysis Oil

PROJECT TEAM

Currently finalizing contracts with partners

US Oil Refineries

Large: Over 75,000 b/d A Small: Under 75,000 b/d

U.S. Timber Production by County (2007)

Board feet per hectare

Sources: WRI analysis on national timber production (Johnson et al., 2009), administrative boundaries (ESRI Data and Maps 9.3.1, ESRI, 2008).

Adjacent Hydropyrolysis Integration With a Refinery

•Best Integration system depends on Oil Refinery specifics-Hydropyrolysis products have low TAN's and can be blended into Refinery streams — Capital cost could be <\$50MM for 2000 t/d of biomass feed

Distributed Hydropyrolysis Sites Feeding an Existing Refinery

Multiple Hydropyrolysis Sites Integrated with Corn Ethanol Production

Existing Refinery

Hydropyrolysis products sent for further upgrading in existing refinery hydrotreaters

Advantages of Hydropyrolysis Oil versus Pyrolysis Oil

	Hydropyrolysis	Pyrolysis	Typical	Typical
	Oil from small	Oil	Partially	Catalytic
	batch tests		Upgraded	Pyrolysis
			Pyrolysis	Oil
			Oil	
% Oxygen	<3	50	8-10	6-10
% Water	<0.5	20	2-3	2-3
Molecular	150-200	500-750	na	na
weight				
TAN	<2	100	5-20	5-20

A more upgraded bio-oil fits in refineries better and presents less risk

Integrated Hydropyrolysis and Hydroconversion (IH²)

- Directly make desired products
- Run all steps at moderate hydrogen pressure (200-500 psi)
- Utilize C₁-C₃ gas to make all hydrogen required
- Avoid making "bad stuff" made in pyrolysis PNA, free radicals

Integrated Hydropyrolysis and Reformer System

Upgrading Hydropyrolysis Oil In a Refinery

IH² 50 kg/d Continuous Pilot Plant

Only Continuous IH² Pilot Plant in the world

Schematic Diagram of Continuous IH² Process Unit

- 2 kg/hr of biomass feed
- Continuous char-catalyst separation
- Continuous operation

First Stage Hydropyrolysis Liquid Boiling Point Distribution from Small Batch tests

Hydropyrolysis Liquid Boiling Point Distribution Cumulative Wt. % versus Boiling Temperature

[•]First stage Hydropyrolysis Liquids have smooth boiling point distribution and are primarily gasoline, jet and diesel

Average Molecular Weight of 1st Stage Hydropyrolysis Oil compared to Pyrolysis Oil

Advantages of Hydropyrolysis vs Pyrolysis

•EHI=(H-2O-3N-2S)/C is a measure of coking, higher EHI=less coking

Conclusions and Future Work

- > Project will look at refinery integration to minimize cost for biomass conversion to gasoline and diesel
 - > Goal is to work closely with Valero and develop the best possible process integration for refiners
 - Project also enables study of hydropyrolysis step alone in IH² – very important for hydropyrolysis design
 - > Project enables continuous testing of hydropyrolysis and IH² for cornstover
 - > Will gather important comparison of risk for IH² versus hydropyrolysis from a refiners point of view
 - > Expect excellent LCA and economics of production (estimated <\$2/gallon minimum selling cost)</p>
- > Remaining work to be done
 - > Project has just begun so bulk of work remains
 - > Hydropyrolysis Pilot plant testing to produce hydropyrolysis oil just beginning