High Efficiency Low Emission Refrigeration System

2016 Building Technologies Office Peer Review

Energy Efficiency & Renewable Energy

Brian Fricke, frickeba@ornl.gov Oak Ridge National Laboratory

Project Summary

Timeline:

Start date: 1 October 2011

Planned end date: 30 September 2017

Key Milestones

1. Evaluate lab-scale prototype, 9/30/15

2. Initiate field evaluation of full-scale system, 3/31/16

Budget:

Total Project \$ to Date:

• DOE: \$1,242k

Cost Share: *

Total Project \$:

• DOE: \$1,900k

Cost Share: *

Key Partners:

Hillphoenix

Danfoss

Luvata

SWEP

Project Outcome:

Develop a supermarket refrigeration system that reduces greenhouse gas emissions by 75% and has 25% lower energy consumption.

^{*} In-kind contribution from CRADA partner exceeds DOE funding level; exact total is confidential information.

Purpose and Objectives

Problem Statement:

- Develop supermarket refrigeration system:
 - Reduce greenhouse gas emissions by 75%
 - Reduce energy consumption by 25%
- Fabricate prototype systems for:
 - Laboratory evaluation
 - Field evaluation

Target Market and Audience:

- 37,000 supermarkets in the U.S.
- 0.68 quads primary energy consumption for supermarket refrigeration
- Large refrigerant charge per store
 - 2000 to 6000 lb
 - High refrigerant leak rates (up to 25% per year)

Potential Savings:

Emissions: 50 MMtCO_{2eq}/yr

Energy: 0.17 quad/yr

Purpose and Objectives

Impact of Project:

- Goal:
 - Develop low emission, high efficiency supermarket refrigeration system:
 - 25% energy savings, 75% emissions reduction
 - Demonstrate system performance:
 - In controlled laboratory setting
 - In third-party installation
- Impact:
 - Encourage implementation of new refrigeration technology:
 - Low emission, high efficiency systems in use in Europe and Canada
 - Encourage market penetration in the U.S.
- Impact Paths:
 - Near term:
 - Product launch by CRADA partner
 - Disseminate system performance data
 - Intermediate/long term: Determine number of systems installed
 - Feedback from owners/operators
 - Proven in-field performance

Approach

Approach:

- Analyze refrigeration system strategies:
 - System types (multiplex DX, secondary loop, CO₂), advanced display case designs, lower Global Warming Potential (GWP) refrigerant options

- Life Cycle Climate Performance (LCCP) modeling - evaluate emissions
- Select prototype refrigeration system:
 - Environmental impact, energy efficiency, cost-effectiveness, marketability, safety and reliability
 - Develop detailed design of prototype refrigeration system

Approach

Approach:

- Fabricate laboratory-scale prototype refrigeration system:
 - Characterize performance under controlled conditions
- Conduct field characterization of the prototype refrigeration system:
 - Install full-scale refrigeration system in a third-party installation
 - Produce field characterization report:
 - Performance of the full scale refrigeration system operating under actual field conditions
 - Insights regarding installation, operation, maintenance, cost

Approach

Key Issues:

- Common multiplex direct expansion (DX) system:
 - Prone to refrigerant leaks:
 - Long piping lengths, high GWP refrigerants
 - High direct emissions
 - Significant energy consumption:
 - High indirect emissions
- Need system with reduced emissions and greater energy efficiency:
 - Lower direct and indirect emissions
 - Cost-effective, safe and reliable

Distinctive Characteristics:

- Refrigeration system developed with industry partner
- System performance characterizations performed:
 - In lab, under controlled conditions
 - In field, under actual conditions

Accomplishments:

- Analyzed energy consumption and environmental effects of various supermarket refrigeration systems
 - Multiplex DX, cascade/secondary, CO₂ transcritical, standard and high efficiency display cases
 - Evaluated energy consumption and LCCP of systems
 - Transcritical CO₂ system: 39% more efficient and 78% less emissions than baseline

Multiplex Direct Expansion (DX) System

Refrigerant: HFC

GWP: High (1600-4000)

Transcritical CO₂ Booster System

Refrigerant: CO₂

GWP: Low (1)

In use in Europe and Canada, but not in US

Accomplishments:

- Developed prototype system
 - CO₂ transcritical booster
 - Based on results of energy and environmental analysis
 - Prepared design documents
- Fabricated prototype refrigeration system
 - Compressor rack
 - Gas cooler/condenser
 - One MT display case
 - One LT display case
 - MT and LT false loads
 - Fully instrumented
 - Installed in ORNL's environmental chambers

Accomplishments:

- Laboratory evaluation
 - Performance determined over temperature range of 60°F to 90°F
 - LT Load: 26,000 Btu/h
 - MT Load: 62,000 Btu/h
 - Compressor power ranged from 6,500 W to 11,500 W
 - COP ranged from 4.1 to 2.1
 - 15% more efficient on average than R404A system over 60°F to 90°F
- Field evaluation
 - Field test site identified
 - Finalizing field evaluation plan, instrumentation requirements, installation logistics

Market Impact:

- CRADA partner has commercialized the low emission high efficiency transcritical CO₂ booster refrigeration system
 - Over 130 installations in the US
- Presentations and publications are raising interest in low emission CO₂ refrigeration systems
 - End-users very interested in laboratory and field test results

Awards/Recognition:

- 2015 R&D 100 Award Finalist
- EERE Success Story: New Advanced Refrigeration Technology Provides Clean Energy, Low Utility Bills for Supermarkets
 - http://energy.gov/eere/success-stories/ articles/new-advanced-refrigerationtechnology-provides-clean-energy-low

Project Integration and Collaboration

Project Integration:

- Developed refrigeration system in collaboration with industry partners:
 Hillphoenix, Danfoss, Luvata, and SWEP
 - Collaborate via conference calls, email, site visits, and meetings at conferences
- Professional organizations (ASHRAE, IIR, AHRI, FMI)
 - Interact with equipment manufacturers and end users at conferences

Project Integration and Collaboration

Partners, Subcontractors, and Collaborators:

- ORNL
 - Expertise in HVAC&R equipment performance evaluation and modeling

- Hillphoenix
 - Supplier of commercial refrigeration systems and refrigerated display cases

- Danfoss
 - Supplier of refrigeration systems, sensors, and controls

- Luvata
 - Supplier of heat exchangers, condensers, and gas coolers

- SWEP
 - Supplier of brazed plate heat exchangers

Project Integration and Collaboration

Communications:

Journal Articles

• International Journal of Refrigeration, 46:86-99 (2014) (1 article)

Conference Papers

- ASHRAE Conference, 22-26 June 2013, Denver, CO. (1 paper)
- ASHRAE Conference, 18-22 January 2014, New York, NY. (1 paper)
- 11th International Energy Agency Heat Pump Conference, 12-16 May 2014, Montreal, Canada.
 (1 paper)
- 15th International Refrigeration and Air Conditioning Conference, 14-17 July 2014, West Lafayette,
 IN. (1 paper)
- 11th IIR Gustav Lorentzen Conference on Natural Refrigerants, 31 August 2 September 2014, Hangzhou, China (3 papers, highlighted on R744.com webpage)
- 6th International Institute of Refrigeration (IIR) Conference on Ammonia and CO₂ Refrigeration Technologies, 16-18 April 2015, Ohrid, Macedonia. (1 paper)

White House Factsheets

- https://www.whitehouse.gov/the-press-office/2015/10/15/fact-sheet-obama-administration-and-private-sector-leaders-announce
- https://www.whitehouse.gov/the-press-office/2014/09/16/fact-sheet-obama-administration-partners-private-sector-new-commitments-

Next Steps and Future Plans

Next Steps and Future Plans:

- Complete performance evaluation of transcritical CO₂ refrigeration system in third-party installation
- Develop next-generation transcritical CO₂ refrigeration system for enhanced performance in hot climates
 - Ejectors
 - Parallel compression
 - Mechanical subcooling
 - Adiabatic gas cooling

REFERENCE SLIDES

Project Budget

Project Budget: DOE total \$1,900k FY12-17

Cost to Date: \$1,242k

Additional Funding: None expected.

Budget History										
10/1/11 – FY 2015 (past)			2016 rent)	FY 2017 – 9/30/17 (planned)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$1,082k	*	\$520k	*	\$300k	*					

^{*} In-kind contribution from CRADA partner – exceeds DOE funding level; exact total is confidential information.

Project Plan and Schedule

Project Schedule												
Project Start: 10/1/11		Completed Work										
Projected End: 9/30/17		Active Task (in progress work)										
	•	Milestone/Deliverable (Originally Planned) use for missed										
	•	Milestone/Deliverable (Actual) use when met on time										
		FY2015			FY2016			FY2017				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Q2 Milestone: Fabricate/install lab system												
Q4 Milestone: Laboratory evaluation												
Current/Future Work												
Q2 Milestone: Identify field site, field test plan												
Q2 Milestone: Field evaluation												Ш
Q2 Milestone: Lab/field evaluation report												
Q4 Milestone: Next generation system												