

Development of Nuclear Quality Components using Metal Additive Manufacturing

Pedro Frigola RadiaBeam Systems, LLC

Advanced Methods for Manufacturing Workshop Lockheed Martin, September 29, 2015

Outline

- RadiaBeam overview
- AM research at RadiaBeam
- Overview of EBM AM technology
- Goals and relevance of the Phase I/II project
- Phase I/II work

Who we are

- RadiaBeam has two core missions:
 - To manufacture high quality, cost-optimized accelerator systems and components
 - To develop novel accelerator technologies and applications
- Currently > 50 employees and growing
 - Consists of PhD Scientist (10), Engineers (18), Machinists (10), Technicians (8), and Administrative (4)

Capabilities

- Design (RF, magnetic, thermal-mechanical)
- Engineering
- Fabrication
- Assembly
- Testing
- Installation
- Service

Facilities

- Machine shops (clean and regular)
- Assembly area
- Magnetic measurements lab
- Optics lab
- Hot test cell (up to 9 MeV)
- Clean room
- Chemical processing
- RF test lab
- Currently 16,000 sq. ft., and looking to expand to > 30k by mid 2016!

Products

- Turnkey accelerators
 - Cargo inspection and Radiography
 - High-power Irradiation
 - Self-shielded irradiators
- E-beam diagnostics
 - Beam profile monitors
 - Bunch length monitors
 - Charge, emittance, etc.
- RF structures
 - RF photoinjectors
 - Bunchers
 - Linacs
 - Deflectors
- Magnetic systems
 - Electromagnets
 - Permanent magnets
 - Systems (chicanes, final focus, spectrometers)

Growing list of customers...

Lawrence Livermore National Laboratory

Multiple Funding Agencies

 SBIR/STTR, BAA, commercial funded and self-funded R&D to develop new products and technical solutions

AM development at RadiaBeam

- 2006 to present: DOE and DHS SBIR/STTR, as well as Internal R&D funded
 - \$3.5M invested in copper, niobium, and multi-material EBM AM R&D
- Active collaboration with NC State, UTEP, JLab, UC Berkeley, LANL
- Developed accelerator designs and methods exploiting AM
 - NCRF accelerators (copper): US Patent 7,411,361 (2008): Method and Apparatus for Radio Frequency Cavity
 - SRF accelerators (niobium): US Patent 9,023,765 (2015); Joint patent with JLab - Additive Manufacturing Method for SRF Components of Various Geometries
- Dissimilar metal joining (Inconel 718 to 316 SS)
 - Applications in nuclear (fission and fusion) and concentrated solar power components (DOE Nuclear Energy Phase I/II (DE-SC0011826))
- RadiaBeam-led collaborations first to developed EBM AM process parameters for pure copper and niobium for NCRF and SRF components
 - T. Horn et. al., Fabricating Copper Components with Electron Beam Melting, Advanced Materials & Processes, Vol. 172, Iss. 7, July 2014 (ASM International)
 - C. Terrazas et. al., Fabrication and characterization of high-purity niobium using electron beam melting additive manufacturing technology, Int. J. Adv. Manuf. Technol., DOI 10.1007/s00170-015-7767-x
 - P. Frigola et. al., "Novel Fabrication Technique for the Production of RF Photoinjectors", EPAC'08, Genoa, Italy, pp. 751-753 (2008).
 - P. Frigola et. al., "Advance Additive Manufacturing Method for SRF Cavities of Various Geometries", SRF2015, Whistler, BC, Canada (2015)

Why make accelerators using AM?

- Improve average power performance (thermal load)
 - Efficient cooling designs
- Improve peak power performance (RF breakdown)
 - Superior (engineered) material properties
- Revolutionize cavity design
 - Eliminate brazing/joining; monolithic design
 - Realize truly novel designs (and materials)
- Reduce time and cost of fabrication

Active areas of interest

- Exploring AM for:
 - Alternative (non rare-earth) permanent magnets
 - Intermetallics compounds for SRF accelerator applications
 - Ceramics for Dielectric Wakefield Accelerator applications
 - Amorphous metals for induction accelerators
 - Multi-material capability
 - Repair (high value) damage components
 - Refractory metals for x-ray converters

EBM Background

- Arcam Electron Beam Melting (EBM)
- 1. Thermionic gun (60 kV)
- Magnetic optics
- 3. Hoppers
- Mechanical rake
- 5. Built part
- 6. Building platform

Project Goals and Relevance to DOE Nuclear Power

- Project Goal
 - Phase I Experimentally demonstrate feasibility of joining dissimilar metals using EBM AM.
 - Phase II Further the fundamental understanding of dissimilar metal joining using EBM AM
- DOE NE Relevance
 - Avoids use of filler materials
 - Vacuum (~10⁻⁴ Torr) limits contamination of oxides and nitrides
 - High quality joint while minimizing the thermal damage to surrounding material
 - Promise of realizing complex multi-material parts

Phase I Summary

- Research explored the feasibility of joining Inc718 and 316L
 SS using EBM AM.
- Simple geometries suitable for material testing were fabricated (Inc718 on 316L and 316L on Inc718) using Arcam EBM, and the joints characterized
- Material testing showed reduced presence of precipitates and narrower HAZ when compared to traditional welding processes
- Change in mechanical properties in the HAZ and the substrate were not greatly affected
- A. Hinojos et. al., Joining of Inconel 718 and 316L Stainless Steel using powder bed fusion additive manufacturing technology, Mater. Sci. Eng.: A, Pending review (Sept. 2015)

Joint Characterization

Phase II

- Phase II goal: Further the fundamental understanding of dissimilar metal joining using EBM AM
 - Introduce simulations to guide material choice in joint design
 - Extend EBM processing to ferritic alloys
 - Extend material testing to nuclear reactor environmental conditions (high temperature, pressure, radiation)

Project schedule

Acknowledgements

Thank you to DOE Nuclear Energy for supporting the work presented here (STTR DE-SC0011826)

STTR Collaborators:

- Alejandro Hinojos, Jorge Mireles, Sara M. Gaytan, Lawrence E. Murr, Ryan B. Wicker, W.M. Keck Center for 3D Innovations at the University of Texas at El Paso
- Ashley Reichardt, Peter Hosemann, Department of Nuclear Engineering at the University of California Berkeley
- Stuart Maloy, Ion Beam Materials Laboratory at Los Alamos National Laboratory