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Project Overview 

Goal: Develop and evaluate a standardized framework for next-
generation online monitoring applicable to current and future 
nuclear systems 

 
Participants: 

• PNNL (Pradeep Ramuhalli, Ramakrishna Tipireddy, Megan Lerchen) 
• University of Tennessee Knoxville (Jamie Coble, Anjali Nair) 
• AMS (Brent Shumaker) 

 
Schedule 

• Three years (FY 2015 – FY 2017) 
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Objectives 

Develop next-generation online 
monitoring applicable to current 
and future nuclear systems 
• Apply data-driven UQ to develop 

methods for real-time calibration 
assessment and signal validation 

• Robust virtual sensors to augment 
available plant information 

• Technologies for sensor response-
time monitoring 

• Considerations for emerging  
sensor technologies 
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Project Background 

 Measurement reliability key to safe, economic and 
secure operation of nuclear systems 
• Interval-based recalibration used to assure reliability  

 
 Current practices have several drawbacks 

• Time consuming and expensive 
• Sensor calibration assessed infrequently 
• Contributes to unnecessary radiological dose 
• Unnecessary maintenance may damage healthy sensors 
• Potential for limited opportunities for maintenance in 

future nuclear systems 
• Different failure mechanisms for next-generation sensors 

and I&C 
 

Pressure Transmitters 
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Sensor Performance Monitoring 
can Improve Reliability of Sensing 

Online monitoring (OLM) supports condition-
based calibration of key instrumentation 

 
OLM technologies can 

• Temporarily accommodate limited sensor failure 
• Provide indications for measurements that cannot be 

made (virtual sensors) 
• Ensure reliability of next-generation sensors and 

instrumentation through formal methods for 
uncertainty quantification 

• Support extended sensor calibration cycles and 
reduce or eliminate TS-required periodic 
recalibration 
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Framework for next generation OLM that enables 
• Recalibration needs assessment for dynamic and steady-state operation 
• Short-term operation with a limited number of failing sensors, through the use 

of virtual sensor technology 
• Ability to derive plant information that currently cannot be measured using 

virtual sensors 
• Monitoring and detection of degradation in sensor response time 
• Predictive (over short-term) assessment of sensor failure 
• OLM framework for emerging I&C technologies 

 
Supports DOE-NE research objectives* 

• Improve reliability, sustain safety and extend life of current reactors 
• Improve affordability of new reactors 

Technology Impact 

*Nuclear Energy Research and Development Roadmap, April 2010 
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Example 
SG Level Measurement and Feed-water 
Control 

NRC ADAMS No. ML11223A293, Figures 11.1-1 and 11.1-4 
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Testbeds Simulate Heat 
Exchanger Operations 

Simple heat exchanger loop 
Sensor and instrumentation 

models coupled to loop model 
Prescribed uncertainty levels to 

directly study effects on sensed 
values and OLM results 
• Normal and anomalous conditions 

I&C026-10

Heat 
Exchanger

Motor Pump
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ITEM ID SENSOR TYPE MANUFACTURER
1 FT-4-1 DIFFERENTIAL PRESSURE ROSEMOUNT
2 FT-3-1 DIFFERENTIAL PRESSURE (SMART) ROSEMOUNT
3 FT-3-2 DIFFERENTIAL PRESSURE BARTON
4 FT-1-1 DIFFERENTIAL PRESSURE FOXBORO
5 FT-1-2 DIFFERENTIAL PRESSURE FOXBORO
6 FT-1-4 DIFFERENTIAL PRESSURE (SMART) BARTON
7 TE-1-2 RTD (SMART) ROSEMOUNT
8 TC-2-1 THERMOCOUPLE TYPE-J (SMART) ROSEMOUNT
9 FT-2-1 DIFFERENTIAL PRESSURE SCHLUMBERGER

 
 

 
 

 
 
 

 
 

 

 

 

 
 
  
 
 
 
  

 
  

 

 
10 CTRL-TEMP RTD (SMART) ROSEMOUNT
11 TC-HX-OUT THERMOCOUPLE TYPE-J OMEGA
12 FT-2-3 DIFFERENTIAL PRESSURE HONEYWELL
13 TC-HX-IN THERMOCOUPLE TYPE-J OMEGA
14 CTRL-PSR GAUGE PRESSURE FOXBORO
15 PT-2 GAUGE PRESSURE ROSEMOUNT
16 TC-LOOP-FAR THERMOCOUPLE TYPE-E OMEGA
17 TC-PUMP-OUT THERMOCOUPLE TYPE-K OMEGA
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Research Tasks 

 Signal validation and virtual sensors 
• Evaluate how uncertainty drives minimum detection limits and acceptance criteria 
• Estimate expected measurement values (and associated uncertainties) for 

replacing faulted sensors 
• Evaluate the effect of using virtual sensors on OLM and OLM uncertainty 
• Develop guidelines for condition-based sensor recalibration 

 Assess impacts of next generation sensors and instrumentation 
• Requirements definition for OLM in next generation I&C 
• Gaps assessment: Map algorithms (from other tasks) to requirements 

 Response time OLM  
• Acceptance criteria development 
• Adapt research in signal validation for response time OLM 

 Verification and validation based on data from a suitable test-bed or 
operating plant 
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Online Monitoring Overview 

Non-intrusive 
• Plant data collected during 

operation 
Anomalies due to sensor 

fault vs. process change 
Acceptance criteria define 

normal performance 
bounds 
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Gaussian Processes 

Use Bayesian statistics to develop models and quantify uncertainty 
• Combine what we already know  (Prior) and the model discrepancy with the 

data (Likelihood). 
General model: 

 
 

General approach: 
• Assume prior for  
• Conditional prior distributions on parameters defining correlation functions 

represented through a basis expansion 
– Likelihood information using multi-output Gaussian processes that explicitly treat 

correlations between distinct output variables as well as space and/or time. 
• Bayesian inference (using a training data set) performed to extract posterior 

distributions  
• Update model in the light of new observations 
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High Confidence Signal 
Validation Through GP Modeling 
of Monitoring System Residuals 

Monitoring system residual is modeled as the combination of 
stationary (nominal) and dynamic (faulted) components 
 
 
 
• y(zi,⍵i) (1) is the monitoring system prediction at point zi, given model 

parameters ⍵i 

• zi (2) is the measurement from the system 
• The stationary component of the monitoring system residual is a 

combination of model inadequacy, δ(zi,⍵i), and measurement noise, ei (3) 
• Anomalies manifest as dynamic component of residual, ⍴∙η(Δti,li) (4), 

where Δti is the elapsed time from onset of fault, η is a function relevant to 
the type of fault with parameters li, and ⍴ is a constant between 0 and 1 
related to the model sensitivity 

( ) ( )


( ) ( )
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Implementation Status of 
Signal Validation 

 Initially focused on implementing the stationary component GP 
model 
• Implementation is ongoing with testing using a variety of available data 

from small flow loops and reactor coolant loops 
 

Assumptions: 
• Measurements, z, follow a non-stationary Gaussian distribution 
• Monitoring system model, y(z,⍵), is static and pre-defined 

– Auto-associative kernel regression is current focus 
– Framework is model agnostic  

• Healthy sensor residuals are stationary in time and across the sensor 
range 
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Virtual Sensing 

Virtual sensor model using 
Gaussian Process 
• Sensor drift: Data with one faulty sensor 
• Model inputs include control and 

process sensor measurements 
• Predicted sensor value includes 

uncertainty in prediction 
• Results indicate potential for predicting 

sensor data with uncertainty bounds, for 
sensor with drift 

• Uncertainty bounds for the predicted 
sensor values are dependent on 
richness of data used for generating the 
model – approaches, including collecting 
additional data, to tighten bounds being 
examined 

 

Virtual Sensor Model 1 

Virtual Sensor Model 2 
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Sensor Response OLM 

 Automated Sensor Response OLM 
• Dynamic response is a key indicator of 

sensor system performance and health 
• Traditional noise analysis methodology 

relies on knowledge from experienced 
engineers 

• Expert knowledge will be combined with 
automated analysis tools to provide 
accurate and repeatable sensor response 
results that can be integrated with other 
OLM analysis techniques 

 Noise Testing and Algorithm 
Development 
• Acquire high-frequency noise data on 

nuclear-grade transmitters in the test loop 
• Simulate voids, leakages, and sensing line 

blockages to facilitate the development of 
robust sensor response evaluation and 
diagnostic algorithms  
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Accomplishments 

 Implemented and evaluated initial approach to virtual sensing 
 Identified needs for sensor response time OLM 
 Implemented initial algorithm for signal validation based on Gaussian 

Process models for monitoring system residuals 
 Update on signal validation and virtual sensing algorithm development 

(PNNL-24702) 
 

 Journal/Conference papers and presentations 
• Coble, JB and A Nair, "High-Confidence Signal Validation for Online Sensor Calibration 

Assessment," Presented at MFPT 2015. Huntsville,AL: May 12-14, 2015. 
• Nair, A, and JB Coble, "A High Confidence Signal Validation Technique for Sensor Calibration 

Assessment in Nuclear Power Systems." 2015 ANS Winter Meeting and Nuclear Technology 
Expo. Washington, DC: November 8-12, 2015. 
 
 

 



17 

Next Steps 

Signal validation 
• Complete implementation and testing of sensor status and fault diagnostics 

using data-driven UQ 
• Input to advanced monitoring/control algorithms 

Virtual sensing 
• Alternate algorithms for virtual sensing 
• Uncertainty must account for spillover of faulty reading into estimate 
• Number of allowed virtual sensors, and duration of applicability to be 

determined 
Response time OLM 

• Implement and verify algorithms for noise analysis 
OLM requirements using emerging I&C technologies 
Verification and validation of algorithms using data from test-beds 

as well as data from operating plants 
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Conclusion 

Research focused on addressing high-impact technical gaps to 
developing a standardized framework for robust next-generation 
online monitoring 

Outcomes enable 
• Extended calibration intervals and relief of even limited periodic 

assessment requirements 
• Assessment of sensor measurement accuracy with high confidence 
• Derived values for desired parameters that cannot be directly measured 

Outcomes support 
• Improved reliability and economics for current and future nuclear systems 
• Deployment of advanced sensors (ultrasonic, fiber optic, etc.) and 

instrumentation (digital I&C, wireless, etc.) 
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