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P T ——— Approach to Enabling a Multi-fold Increase in Fuel
AW ENERGY Burnup over the Currently Known Technologies

Ultimate goal: Develop advanced materials immune to fuel, neutrons and coolant
interactions under specific reactor environments
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JENERGY Outline

Nuclear Energy

B Qualify HT-9 to Radiation Doses >250 dpa
— Calculations for CEFR Irradiation
— Development of new heat of HT-9
B Develop Advanced Radiation Tolerant Materials
— ODS processing of new heat of 14YWT (FCRD-NFAL1)
— Testing of Advanced ODS alloys after Irradiation
— Progress on Tube Processing
B Develop Coatings and liners to prevent FCCI
— Testing coated tubes in fueled irradiations (CRADA’s with KAERI and Terrapower)

Advanced Fuels Campaign




&R v o=ranmentor - Significant data has been obtained on previously
YWWENERGY irradiated materials. How do we obtain data to dose
levels out to 400 dpa?

Nuclear Energy
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U.S. DEPARTMENT OF

Continuing to work to
ENERGY agreement with CIAE

Nuclear Energy 316Ti End Plug
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Specimens (10x)

FMS/ODS Tensile
Specimens (20x)

316Ti Tensile Specimen Inclusion Filler
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SiC Temperature Monitors
(20 per layer)

« Thermal hydraulic calculations continue
while working on CRADA
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Nuclear Energy

Improved Radiation Response of
New NQA1 Heat of HT-9

B 300 Ib heat of HT-9 produced by Metalwerks following NQA-1 quality control

B Tensile specimens irradiated in ATR to 6 dpa at 290° C
— Hardening observed but excellent ductility retained after low temperature irradiation

B lonirradiations performed to 600 dpa at 425° C
— Minimal swelling observed in tempered martensitic grains after ion irradiation to >500 dpa.

B Two new heats of HT-9 were produced by Metalwerks with controlled interstitial

content.
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JENERGY Reduction of Area Measurements
Nuclear Energy

B HT-9 heat retains UE
and reduction of
area after irradiation
to 6 dpa at 290 C.

B |n addition, less
cracking observed
near fracture
surface compared
to T91 and NF616.

HT-9 T91 NF616
Uniform Total Reduction
Material ID Type Yield UTS Elongation | Elongation in Area
MPa MPa % % %

HT9 TB#H1c Control 560 761 9.15 21 55.03
HT9 TBO1 Irradiated 1100 1175 4.54 10.9 46.22
T91 TAO4 Irradiated 1055 1102 1.07 5.7 39.03
NF616 NF04 Irradiated 1120 1154 0.65 4.7 23.72




U.S. DEPARTMENT OF P r 9V| O U S ReS U I tS S h OWI n g
WENERGY  Reduction of Ductility in irradiated
Nuclear Energy —/M steels
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Anderoglu, O., Byun, T. S., Toloczko, M. and Maloy, S. A. Mechanical Performance of
Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors.

Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,
44A(Jan 2013), 70-83.



ER. U.S. DEPARTMENT OF

JENERGY Exact Elemental Analysis on Control

Nuclear Energy Materials

Alloy C Cr Mn | Ni |Si Mo | Nb vV |W |[O N P S Al [Cu [Co |Ti |Fe

HT-9 .201|12.49 [ 41 |.60 |.28 |1.07 |<.002 | .29 (.52 |.002|.001 |.007 |<.0005 |.015|.034 |- - | Bal

Eurofer97 | 117 | 8.69 |.47 |.024|.056 |.005 |<.002 | .20 |.82 |.003 |.023|.004|.002 |.009|.023|.0 |.0 |Bal
11 (06

F82H .093 789 (.16 |.026|.12 |.005 [<.002 | .16 |[1.21|.003 |.008 |.004 |.002 .002 (.028 .0 |.0 |Bal
07 |02

NF616 .108 | 9.71 | .46 |.064|.056 .47 |[.043 |.20(1.22|.003|.060 |.007 |.001 .003|.035|.0 |.0 |Bal
15 |03

T91 .052 922 |46 |.18 |.24 |.96 |[.063 |.24(.013|.002 |.057|.016 |-001 .009 (.087 .0 |.0 |Bal
21 |02

LANL, UCSB




U.S. DEPARTMENT OF

ENERGY Effects of Interstiti

band formation in

Nuclear Energy

Stress, MPa
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Engineering Strain, %

Fig 3. The stress—sirain curve for the specimen along the rolling direction of the
experimental steel after different annealing treat mentsat the strain rate of 0001 577,

LY. Lir ef ol f Materials Soence and Ergneering A 527 ( 2010) 2800- 2806



. U.S. DEPARTMENT OF

&) ENERGY  Proposed Hypothesis and Future
Research

Nuclear Energy

B Proposed Hypothesis:
— Nitrogen attracts point defects under irradiation.
— This creates stronger pinning centers in ferritic alloys

— Under stress, when the pinning centers are overcome, defect free channels
are formed leading to localized deformation and reduced uniform elongation.

B Next steps

— Procure new heats of HT-9 with controlled nitrogen (two heats produced by
Metalwerks)

— Perform ion irradiations followed by mechanical testing. Investigate
deformation microstructure with TEM.

— Microstructural analysis of irradiated tensile specimens after deformation.



U.S. DEPARTMENT OF

ENERGY Outline

Nuclear Energy

B Qualify HT-9 to Radiation Doses >250 dpa
— Calculations for CEFR Irradiation
— Development of new heat of HT-9
B Develop Advanced Radiation Tolerant Materials
— ODS processing of new heat of 14YWT (FCRD-NFA1)
— Testing of Advanced ODS alloys after Irradiation
— Progress on Tube Processing
B Develop Coatings and liners to prevent FCCI
— Testing coated tubes in fueled irradiations (CRADA’s with KAERI and Terrapower)

N{ Advanced Fuels Campaign
13



R, U.S. DEPARTMENT OF

¥ ENERGY Nanostructured

A s
3|0 SIO JIO 0 =0 =30 30

Nuclear Energy Ferritic Alloys - A
fage, | E
 Strength & damage resistance derives from a high density Ti- o .,;:: %, 1"
Y-O nano-features (NFs) e w0 g
e NFs complex oxides (Ti,Y,0-, Y,TiOg) and/or their transition T |
phase precursors with high M/O & Ti/Y ratios (APT) &% i"i:;,ﬁ A
 MAdissolves Y and O which then precipitate along with Ti 4;: T;;g w 8
during hot consolidation (HIP or extrusion) q,ﬂ:‘i.f#% .
* Oxide dispersion strengthened alloys also have fine g T ; ;
grains and high dislocation densities ,&?;,m } 8

UCSB, LANL, ORNL
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Typical Processing Route for ODS
Aol

Nuclear Energy

* Any desired combination of powders: metals, alloys, and
dispersoid, such as oxides, carbides, borides, etc.

Water-cooled
chamber
h& S il
] ) N 1
Alloy Powder 5 [Tt N .
al b e ~—»- EEmmmsmam —» Nachining
E>.-;i_-..2 FEEEING ‘
! ‘7 - '.'"...‘:.
ssoees? Mechanically  Ram X &)
& alloyed powder Extrusi : -
Y.O Steel ball rusion press t )
2~3 ~
. Hot rolling Final product
B Rotating
impeller

HIP —snear net shape final product

0z

The conventional approach is to ball mill alloy and
Y,O; powders together




&) ENERGY Scale Up Production of 14YWT
Ferritic Alloy (Heat FCRD-NFA1)

Nuclear Energy

B 4 of 4 ball milling runs completed by Zoz V540-02 Ball Milled 40 h
MET. SPECIMEN NO: 12-0581
» V540-01: 15 kg of coarse (>150 um) powder LOAD ngrarms: 200 __

» V540-02: 15 kg of medium (45-150 um) and fine | 1| 72357
(<45 um) powder B S

» V540-03: 15 kg medium, fine and small amount | o e

of V540-01 coarse powder | 6 | 768.03

AVERAGE = 729.36

» V540-04: 15kg medium, fine powder mlxed Wlth STD= 2399

yttria for the oxide dispersion. 1 =

B EPMA showed 40 h ball milling s g~
distributed Y uniformly in fine
and medium powders

B 40 h ball milling did not
distribute Y uniformly in coarse -
powders

0 20 40 60 80 100 120 140 160 180 200 22X

B Mechanical testing underway. LanL, orne  Hine Sean Length (um)

Composition (wt.%)
o




U.S. DEPARTMENT OF

ENERGY

Nuclear Energy

Extrusion and plate fa

B 4 new extrusions of FCRD-NFA1 heats were performed
» 2 extrusions are for EPRI Program
» 2 extrusion is for FCRD Program

B Each bar section was cross-rolled to 50% reduction In
thickness at 1000°C

» 12 plates were fabricated (6 for EPRI and 6 for FCRD Programs)
» 10 plates were decanned

— ORNL




MR U.s. DEPARTMENT OF Characterization of FCRD-NFA1 Material

JENERGY  _\p7

Y/Ti/Cr/O Number Density Diameter Solute Fraction
(10%3/m3) (nm) (%)

13.7/41.8/44.5 10.5/32.0/23.6/34.0 6.86 2.02%+0.78 0.74
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Mechanical Properties
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Nuclear Energy

Mechanical Testing of FCRD-NFA1

Alloy SSJ2 and Machined Specimens

Round SSJ2
FCRD 359+18 tensile specimens 1/3-1/2 bend bars
PM2 401+15
MA957 336+*8 Ls 20
j L-S: 20
\:UQ TL: 20
L-T: 20

120mm
/ Extrusion dir
SSJ2 Tensile

( L | T: 36
10mm I T-S

80mm Round Tensile (Creep)
Rolling dir
< > T:8
Round tensile specimens will be used for high temperature strain-rate L:8

jump tests

UCSB
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WENERGY

Nuclear Energy

NFA-1 Strength, Ductility and
Toughness

Je

K (MPam"

« Unusual combination of high tensile strength and ductility

« Very low brittle-ductile transition temperature (-150 to -175° C) —>

high isotropic strength and ductility in the presence of deep-sharp

cracks (toughness)
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Nuclear Energy

High Temperature Creep

 The high temperature creep

strength of NFA-1 Is
comparable to that of the
stronger variants of MA957
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ENERGY

Nudisar Enengy Stable crack growt

 High tensile strength controlled stable crack growth ductile
tearing toughness and very high “ductility” down to -175° C
« Behavior due to a delamination toughening mechanism

140 TL1(20C)

TL5(-175 C) TL3(-196 C)

120
100
2 80 * TL1(25C)
5
P
- 60 ~ + TL3(-193C)
a0 - §f
: I NEUP, UCSB
20 o
0 5 10 15 20 25 30 35

Displ, mils



ER -5 o=ranuenT oF “Best Practice” Processing of 14YWT:
WENERGY Significant increase in high-temperature
Nuclear Energy fracture toughness (FT)

250

e 1 » FT of the three

o m 14YWT heats is higher
| o == than that that of SM10
| from 25° to 700°C and
up to 4x higher than
SM10 at 500°C
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» FT of SM170 and
SM185 are above 100
MPaVvm?2 at 700°C

Fracture Toughness (MPavm??2)
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B The improvement in high-temperature fracture
toughness is unprecedented for ODS ferritic alloys
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Radiation Resistance



R u5 DeranTien o Ductility Retention in MA957 after irradiation

Ay EN E?GY to 6 dpa at 290C

Nui

T91 vs MA9S7
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ENERGY ODS alloys

Nuclear Energy

B 3 cans were extruded with mandrel at 850°C and decanned
e 6-7 mm wall thickness; 31-32 mm diameter; 10.5-11.3 cm long

B Working with PNNL (Curt Lavender) and CEA on Pilger processing of
starting thick walled tubing and J. Lewandowski (CWRU) on hydrostatic
extrusion

e i

=

Hydrostatic EXTRUSION TEMP: 1500F (815C)

RAM SPEED: 0.5 in/min, however 15t0.5” of extrusion,
speed was 0.7 in/min

SOAK TIME: 10 min

OVERALL EXTRUSION: 25 min

ER: 4:1, 45 DEG TAPER DIE (actual 0.495 diam)
CLAD/MANDREL DESIGN DIFF FROM PREVIOUS

N

SIS

LANL, PNNL, ORNL, CWRU
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Data to 250-
300 dpaon

dpaon ODS

ata on Advanced Materialis to 80-100 dpa

FY 12 FY 13 FY 14 Flr '15 FY 16 FY 17

Use data for physics-based model development of cladding
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