

Nuclear Energy

Development of Advanced Ferritic Steels for Fast Reactor Cladding

Stuart A. Maloy

Advanced Reactor Core Materials Technical Lead for Advanced Fuels Campaign
Los Alamos National Laboratory

Contributors

- LANL: Tarik Saleh, Toby Romero, Matthew Quintana, Bill Crooks, Ed Garcia, Osman Anderoglu, E. Aydogan, Ming Tang, Eric Olivas
- PNNL: Mychailo Toloczko, David Senor, Curt Lavender, T. S. Byun
- INL: Jim Cole, Randy Fielding, Jian Gan, Mitch Meyer, Bulent H. Sencer, Emmanuel Perez, Michael Teague
- ORNL: David Hoelzer
- Radiation Effects Consulting: F. Garner

- ATI Inc.- M. Ferry, Jean Stewart
- Kharkov Institute of Physics and Technology- V.V. Bryk
- UCB: P. Hosemann
- **CWRU: J.J. Lewandowski**
- PSI: Y. Dai
- Texas A&M: Lin Shao (NEUP)
- UCSB: G.R. Odette, N. Cunningham, T. Yamamoto, M. E. Alam (NEUP)

Approach to Enabling a Multi-fold Increase in Fuel Burnup over the Currently Known Technologies

Ultimate goal: Develop advanced materials immune to fuel, neutrons and coolant interactions under specific reactor environments

Outline

Nuclear Energy

■ Qualify HT-9 to Radiation Doses >250 dpa

- Calculations for CEFR Irradiation
- Development of new heat of HT-9

■ Develop Advanced Radiation Tolerant Materials

- ODS processing of new heat of 14YWT (FCRD-NFA1)
- Testing of Advanced ODS alloys after Irradiation
- Progress on Tube Processing

Develop Coatings and liners to prevent FCCI

Testing coated tubes in fueled irradiations (CRADA's with KAERI and Terrapower)

Nuclear Energy

Significant data has been obtained on previously irradiated materials. How do we obtain data to dose levels out to 400 dpa?

Improved Radiation Response of New NQA1 Heat of HT-9

- 300 lb heat of HT-9 produced by Metalwerks following NQA-1 quality control
- Tensile specimens irradiated in ATR to 6 dpa at 290° C
 - Hardening observed but excellent ductility retained after low temperature irradiation
- Ion irradiations performed to 600 dpa at 425° C
 - Minimal swelling observed in tempered martensitic grains after ion irradiation to >500 dpa.
- Two new heats of HT-9 were produced by Metalwerks with controlled interstitial content.

INL-HT-9 Heat, best ductility

Reduction of Area Measurements

Nuclear Energy

- HT-9 heat retains UE and reduction of area after irradiation to 6 dpa at 290 C.
- In addition, less cracking observed near fracture surface compared to T91 and NF616.

NF04

Irradiated

NF616

4.7

23.72

					Uniform	Total	Reduction
Material	ID	Type	Yield	UTS	Elongation	Elongation	in Area
			MPa	MPa	%	%	%
HT9	TB#1c	Control	560	761	9.15	21	55.03
HT9	TB01	Irradiated	1100	1175	4.54	10.9	46.22
T91	TA04	Irradiated	1055	1102	1.07	5.7	39.03
					,	•	

1154

0.65

1120

Nuclear Energy

Previous Results showing Reduction of Ductility in irradiated F/M steels

Anderoglu, O., Byun, T. S., Toloczko, M. and Maloy, S. A. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 44A(Jan 2013), 70-83.

ENERGY Exact Elemental Analysis on Control **Materials**

Alloy	С	Cr	Mn	Ni	Si	Мо	Nb	V	W	0	N	Р	S	Al	Cu	Со	Ti	Fe
HT-9	.201	12.49	.41	.60	.28	1.07	<.002	.29	.52	.002	.001	.007	<.0005	.015	.034	-	-	Bal
Eurofer97	.117	8.69	.47	.024	.056	.005	<.002	.20	.82	.003	.023	.004	.002	.009	.023	.0	.0	Bal
																11	06	
F82H	.093	7.89	.16	.026	.12	.005	<.002	.16	1.21	.003	.008	.004	.002	.002	.028	.0 07	.0 02	Bal
NF616	.108	9.71	.46	.064	.056	.47	.043	.20	1.22	.003	.060	.007	.001	.003	.035	.0 15	.0 03	Bal
T91	.052	9.22	.46	.18	.24	.96	.063	.24	.013	.002	.057	.016	.001	.009	.087	.0 21	.0 02	Bal

Effects of Interstitial content on Luder's band formation in Ferritic steels

Fig. 3. The stress-strain curve for the specimen along the rolling direction of the experimental steel after different annealing treatments at the strain rate of 0.001 s⁻¹.

Proposed Hypothesis and Future Research

Proposed Hypothesis:

- Nitrogen attracts point defects under irradiation.
- This creates stronger pinning centers in ferritic alloys
- Under stress, when the pinning centers are overcome, defect free channels are formed leading to localized deformation and reduced uniform elongation.

Next steps

- Procure new heats of HT-9 with controlled nitrogen (two heats produced by Metalwerks)
- Perform ion irradiations followed by mechanical testing. Investigate deformation microstructure with TEM.
- Microstructural analysis of irradiated tensile specimens after deformation.

Outline

Nuclear Energy

■ Qualify HT-9 to Radiation Doses >250 dpa

- Calculations for CEFR Irradiation
- Development of new heat of HT-9

■ Develop Advanced Radiation Tolerant Materials

- ODS processing of new heat of 14YWT (FCRD-NFA1)
- Testing of Advanced ODS alloys after Irradiation
- Progress on Tube Processing

Develop Coatings and liners to prevent FCCI

Testing coated tubes in fueled irradiations (CRADA's with KAERI and Terrapower)

Nanostructured Ferritic Alloys

- Strength & damage resistance derives from a high density Ti-Y-O nano-features (NFs)
- NFs complex oxides $(Ti_2Y_2O_7, Y_2TiO_5)$ and/or their transition phase precursors with high M/O & Ti/Y ratios (APT)
- MA dissolves Y and O which then precipitate along with Ti during hot consolidation (HIP or extrusion)
- Oxide dispersion strengthened alloys also have fine grains and high dislocation densities

Typical Processing Route for ODS Alloys

 Any desired combination of powders: metals, alloys, and dispersoid, such as oxides, carbides, borides, etc.

The <u>conventional approach</u> is to ball mill alloy and Y_2O_3 powders together

Scale Up Production of 14YWT Ferritic Alloy (Heat FCRD-NFA1)

Nuclear Energy

- 4 of 4 ball milling runs completed by Zoz
 - > V540-01: 15 kg of coarse (>150 μm) powder
 - V540-02: 15 kg of medium (45-150 μm) and fine (<45 μm) powder
 - V540-03: 15 kg medium, fine and small amount of V540-01 coarse powder

> V540-04: 15kg medium, fine powder mixed with yttria for the oxide dispersion.

- EPMA showed 40 h ball milling distributed Y uniformly in fine and medium powders
- 40 h ball milling did not distribute Y uniformly in coarse powders
- Mechanical testing underway. LANL, ORNL

Extrusion and plate fabrication

Nuclear Energy

- 4 new extrusions of FCRD-NFA1 heats were performed
 - 2 extrusions are for EPRI Program
 - 2 extrusion is for FCRD Program
- Each bar section was cross-rolled to 50% reduction in thickness at 1000°C
 - 12 plates were fabricated (6 for EPRI and 6 for FCRD Programs)

> 10 plates were decanned

Characterization of FCRD-NFA1 Material –APT

Y/Ti/O	Y/Ti/Cr/O	Number Density (10 ²³ /m³)	Diameter (nm)	Solute Fraction (%)
13.7/41.8/44.5	10.5/32.0/23.6/34.0	6.86	2.02 ± 0.78	0.74

Mechanical Properties

Mechanical Testing of FCRD-NFA1

Nuclear Energy

NFA-1 Strength, Ductility and Toughness

- Unusual combination of high tensile strength and ductility
- Very low brittle-ductile transition temperature (-150 to -175° C) —>
 high isotropic strength and ductility in the presence of deep-sharp
 cracks (toughness)

High Temperature Creep

Nuclear Energy

• The high temperature creep strength of NFA-1 is comparable to that of the stronger variants of MA957

• MA957 rupture time @ 100 MPa & 800° C > 38,000 h!

"Best Practice" processing of NFA1:

Stable crack growth toughness

• High *tensile strength* controlled stable crack growth ductile tearing toughness and very high "ductility" down to -175° C

• Behavior due to a delamination toughening mechanism

Nuclear Energy

"Best Practice" Processing of 14YWT: Significant increase in high-temperature fracture toughness (FT)

- ➤ FT of the three
 14YWT heats is higher
 than that that of SM10
 from 25° to 700°C and
 up to 4x higher than
 SM10 at 500°C
- ➤ FT of SM170 and SM185 are above 100 MPa√m^{1/2} at 700°C
- The improvement in high-temperature fracture toughness is unprecedented for ODS ferritic alloys

Radiation Resistance

Nu

Ductility Retention in MA957 after irradiation to 6 dpa at 290C

LANL, UCSB,

Fabrication of Cladding Tubes from ODS alloys

- 3 cans were extruded with mandrel at 850°C and decanned
 - 6-7 mm wall thickness; 31-32 mm diameter; 10.5-11.3 cm long
- Working with PNNL (Curt Lavender) and CEA on Pilger processing of starting thick walled tubing and J. Lewandowski (CWRU) on hydrostatic extrusion

- 1. Hydrostatic EXTRUSION TEMP: 1500F (815C)
- 2. RAM SPEED: 0.5 in/min, however 1st 0.5" of extrusion, speed was 0.7 in/min
- 3. SOAK TIME: 10 min
- 4. OVERALL EXTRUSION: 25 min
- 5. ER: 4:1, 45 DEG TAPER DIE (actual 0.495 diam)
- CLAD/MANDREL DESIGN DIFF FROM PREVIOUS

Core Materials Research and Development – 5 Year Plan

