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ART Program Supports Advanced

Nuclear Energy Reactor Development

B Advanced Reactor Technologies (ART)
Program supports multiple high-level
objectives identified in the 2010 Nuclear
Energy R&D Roadmap (2 & 3)

(2) Develop improvements in the
affordability of new reactors to enable
nuclear energy to help meet the
Administration’s energy security and climate
change goals

(3) Develop sustainable nuclear fuel cycles

...overall goal is to have demonstrated the
technologies necessary to allow commercial
deployment of solution(s) for the sustainable
management of used nuclear fuel that is
safe, economic, and secure and widely
acceptable to American society by 2050.”

NUCLEAR ENERGY
RESEARCH AND DEVELOPMENT
ROADMAP

REPORT TO CONGRESS

April 2010

v U.S. DEPARTMENT OF
” ENERGY

Nuclear Energy
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Advanced Reactor Technologies Program

Nuclear Energy

Program Mission:
To research and develop advanced technologies to significantly improve

the efficiency, safety, and performance of advanced reactor systems

Advanced Reactor Technologies (ART)

A
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Fast Reactor Thermal Advanced Advanced Advanced

Technologies Reactor Reactor Reactor Reactor

Technologies Generic Licensing System

Technologies Studies
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Nuclear Energy Advanced Nuclear Reactor Technologies
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B Development and qualification of advanced structural materials
are critical to the design and deployment of the advanced
nuclear reactor systems that DOE is developing

e High and Very High Temperature Gas Cooled Reactors (HTGRs and
VHTRS)

e Sodium Cooled Fast Reactors (SFRs)
e Fluoride Salt Cooled High Temperature Reactors (FHRS)
B Structural materials must perform over design lifetimes for

pressure boundaries, reactor internals, heat transfer
components, etc.

B Performance of metallic alloys and graphite for the long times
and high operating temperatures required is being examined
under the Advanced Reactor Technologies (ART) Program
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ART Program Includes Advanced
Nuclear Energy Materials R&D Activities

] Develqpment and quglification of AFR-100
graphite, improved high-temperature i
alloys, and ceramic composites for
advanced reactor systems

B Advanced Fast Reactor-100is an
example of fast reactor systems
e Targets local small grids with limited
needs for on-site refueling
e 250MW1/100MWe, sodium-cooled, core
life (30 years), plant life (60 years)
B AREVA’s High Temperature Reactor
Is an example of a He-cooled system

e TRISO fueled, graphite moderated

e 625MW1t/315MWe, 750°C outlet
temperature to steam generator, plant
life (60 years)
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Advanced Materials Program Structure

Advanced Materials
e Technical Area Lead;: Sam Sham, ORNL

High Temperature Materials
e Technical Lead: Richard Wright, INL

Graphite
e Technical Lead: Will Windes, INL

Fast Reactor Structural
e Technical Lead: Sam Sham, ORNL
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William Corwin, DOE-NE, ART Materials Technology Lead

Project 12-3541, Accelerated irradiations for high dose microstructures in fast reactor alloys (University of Michigan)

Project 12-3882, Neutron irradiation damage in pure iron and Fe-Cr model alloys (University of Illinois, Urbana-Champaign)

Project 13-4791, Mechanistic models of creep-fatigue crack growth interactions for advanced high temperature reactor components (Oregon
State University)

Project 13-4900, Corrosion of structural materials for advanced supercritical carbon-dioxide Brayton cycle (University of Wisconsin-Madison)
Project 13-4948, Fundamental understanding of creep-fatigue interactions in 9Cr-1MoV steel welds (Ohio State University)

Project 13-5039, Multi-resolution testing for creep-fatigue damage analysis of Alloy 617 (Arizona State University)

Project 13-5252, Long-term prediction of emissivity of structural material for high temperature reactor systems (University of Missouri)

Project 14-6346, Integrated computational and experimental study of radiation damage effects in Grade 92 Steel and Alloy 709 (University of
Tennessee-Knoxville)

Project 14-6562, Development of novel functionally graded transition joints for improving the creep strength of dissimilar metal welds in
nuclear applications (Lehigh University)

Project 14-6762, Microstructural evolution of advanced ferritic/martensitic alloys under ion irradiation (University of lllinois, Urbana-
Champaign)

Project 14-6803, Dissimilar joints between 800 H alloy and 2.25 Cr & 1 Mo steel (Pennsylvania State University)

Project 15-8308, Creep and creep-fatigue crack growth mechanisms in Alloy 709 (North Carolina State University)

Project 15-8432, Multi-scale experimental study of creep-fatigue failure initiation in a 709 Stainless Steel alloy using high resolution digital
image (University of lllinois, Urbana Champaign)
Project 15-8548, Assessment of Aging Degradation Mechanisms of Alloy 709 for Sodium Fast Reactors (Colorado School of Mines)

Project 15-8582, Mechanistic and Validated Creep/Fatigue Predictions for Alloy 709 from Accelerated Experiments and Simulations (North
Carolina State University)

Project 15-8623, Characterization of Creep-Fatigue Crack Growth in Alloy 709 and Prediction of Service Lives in Nuclear Reactor Components
(University of Idaho)
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Fast Reactor Structural
Activities
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Advanced Structural Materials Provide
| Greater Safety Margin and Design Flexibility

Nuclear Energy

B Higher strength for constant

temperature:
— Reduced commodities 300 e M ‘N\ """""" =L
— Greater safety margins R ] common B
— Longer lifetimes £ =0 CRwes f
B Higher temperature for constant 8 00l N O NG
stress: ]
— Higher plant performance (e.g., 150 -
thermal efficiency) :
— Reduced commodities 1007 A
— Greater safety margins in accident ]
scenarios 507
B Combinations of above: ol

_ o a50 | s00 | s50 600 | 650
— Greater design flexibility Temperature (°C)
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Nuclear Energy

Enhanced structural performance of AFR construction materials
would reduce capital costs, enable more flexible designs, and
Increase safety margins

FY 16 &
FY 08 FY 09-12 FY 13-15 Beyond
B Established B Down-selected B Intermediate B Opt Grade 92 - to
advanced one austenitic term testing to complete assessment
materials steel and one support ASME B Alloy 709 - to initiate
development FIM steel Code Code Qualification effort,
strategy Quialification and to integrate NEUP
1 assessment project activities
H Alloy 709 (Fe-20Cr- 1
25Ni base) austenitic
steel B Alloy 709 — testing
B Grade 92 steel with completed, recommended
optimized chemistry for ASME Code Qual.
and thermo- B Opt Grade 92 steel - still
mechanical treatment waiting for some longer
term data before
assessment can be made
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Optimized Grade 92
Alloy Chemistry

ASTM A1017 — 11 (Grade 92); A182 — 12a (F92); A335 — 11 (P92); A213 — 11 (T92)

[Carlan et al. JNM (2004)]

C Mn P S Si Cr | Mo | Ni Vv Nb B N w Others
Min. | 0.07 | 0.3 8.5 | 0.3 0.15 | 0.04 | 0.001 | 0.03 | 1.5
Max. | 0.13 | 0.6 | 0.02 | 0.01 | 0.5 | 95 | 0.6 | 0.4 | 0.25 | 0.09 | 0.006 | 0.07 | 2.0 | 0.02Al, 0.01Ti/Zr
200 N
1S S S
B Alloy chemistry of optimized Grade 92 is adjusted to £ 150 -
— Reduce Ni, Si, and Mn contents, which tend to impair creep 2 :i: e
-~ [+ = et o =
strength ] . D E——
- Redl_Jc_e Cr,3Cq-type prgcipitates and increase MX-type ;% 50 a-——-@.f..z—_._g.r:___h._g;:E:._____ﬁ_____@F___ﬂ___ﬁﬂ__ﬂ”'“
precipitates for better high temperature performance 25 - =
’ 0:2 0:4 OI.G 018
B Computational alloy thermodynamics is used to 1 _Content/wt%
“visualize” the effect of alloy chemistry changes on oo} |
phase constituents, which provide key information 08) ow |
to alloy microstructure and subsequent L O 'l_‘
thermomechanical treatment process. g 087 '-
05 &
g |8 ||
E 0.44 & oo }l
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Pl Optimized Grade 92
Thermomechanical Treatment (TMT)

B TMT can be easily implemented during conventional Grade 92 production.

Melting and

g Conventional
Ingot Casting N&T
—| A |— | A
Normalization Tempering

P
rocess T™T /

Process

B TMT, significantly introducing additional nucleation sites for MX precipitates and
possible refining grain size, would noticeably increase material’s performance.

18 j 600°C G92T5B
260 MPa
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10

Strain (%)
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Creep Resistance

B Creep tests have being conducted at 550, 600 and 650C and various loads.

The longest test has achieved > 12,500 h at 550C.

B The test results indicate noticeable increases in creep strength as

compared to P92 and P91.

Creep cavities (lots <~2 ym and a few up to
~10 um) formed close to the rupture site of a
Opt Grade 92 specimen tested at 600C.

(a)

Normalized Creep Stress

0.5

PA1 (open circles)
o ? > [
. T ©--. 1 *s0ec
. oy
+»
G-- 1
* O.. 600°C
® * Q--. G-
il .
X * -
O] es0ec
100 1000 10000

Time to Rupture (h)
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Grade 91 Data Plot prepared by EPRI
600°C Tests Only

100 “10ne European Manufacturer's Database Only .
I e e 0% o :
— 1 o}." ...‘ .‘.ﬁ."o ® ! _
2 80 A ®eoe o o0 g s & ORNL 6303 Aim
< ° ® L Behavior 70%
g - ......a......;........................'...‘ ....... @ i @ rrneereeenanenns IL.. .............................................
i o @ &} o e
E 60 - ® ° ® ooy ° ,I.
Y . [ ] : [@]
- ! , e P “ % ’
o]
= 40 LK) ® |
0 . ® ® ®
.§ g : ‘ @ o E
¢ 20- . ® o 9, .
@ @ ' &
1000 10000 | 100000

Time to Rupture (hours)

« Grade 91 base metal has been shown to exhibit wide variability of
creep rupture ductility for the same life (can vary from 1 to 75%)

* Tightening of the chemistry spec and impurities of Grade 91 is being
considered by ASME to mitigate the issue
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Creep Rupture Ductility for Opt Grade 92

B Higher temperature and tube products (i.e., T92 and T91) tend to result in lower
elongation and reduction of area (RoA).

(e) 30 - (f) 30 1
L]
opt. Goz ] ] Opt. G92
40 A A0 A o RS
:I. (=l I-'
L]
— & O — &
E A o l.‘ " E' _E_E_ EO lla%
c 30 1 oA A c 30 1 o ab
i & .# & . L]
' 48 olell & o] %
Eﬂ : ' . lﬁ"‘“;‘ “- a‘ Eﬂ i
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w 11 &T92-600C ] ™ | L i - #
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. . hal W1 © T91-650C :
lD : "'DDT_GQZ'ESDC A '\\__‘ a t“x‘ lD : "DDT_GQE-EEDC fo] '._ S}
1| & paz-gs0c a 28l 1| ®Parssoc !
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Grade 92 Data

Time to Rupture (h)

[Reference data of P/T91 and P/T92: NIMS
Creep Data Sheet and ASME STP-NU-
019-1 (by R.W. Swindeman et al. 2009)]

40y 60y

Grade 91 Data

Time to Rupture (h) 40y 60y

* The inclusion of 597C
and 649C data in both
tube form and plate form
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VJENERGY Welds Fabrication

Nuclear Energy

B Single compound bevel U-shape groove was designed for gas tungsten arc welding
(GTAW) of the 1”- and 1.6”-thick plates to accommodate standard size creep/tensile

and other testing specimens. Sty
“’""J'_ZE“J' Top width of weld metal = 0.64" ‘\ [ j
I

vl

Top width of weld metal = ~1.05"

|| prem—— W |
S e [ —(

i e |
Longitudinal ! ® Transverse Longitudinal ! ® Transverse

B Welds have fabricated from heats 011365 and 011449 at ORNL and a subcontract
(SWM) following ASME Section IX Welding Qualifications, e.g., QW/QB 422 A/SA-182
F92 (K92460) with welding P-No. 15E.

— Current pulsing was employed for the welds because
non-pulsing resulted in much more cavities in the weld
metal although the cavities did not result in noticeable cracks.

A with pulsing

from top

m
=
o
2
=
|

1
LM
o

ulsed-current

"\'P'“'““"t"? and Size Permitted  ASNE Section IX
" Over 1 23 mens Thickness.  QW-191.1.2.2(b)(4)
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B The optimized Grade 92 having refined microstructure
with a high density of MX precipitates helps reducing
re-precipitation of Cr,;C, at boundaries in the HAZ of

welds, which delays Type IV cracking with less
reduction in creep life.

— Creep voids (black) formed in the HAZ after test at 650C but
not associated with dispersive Laves phase (white particles).

ep test
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'ENERGY Fatigue — Cycles to Failure v. Strain Range

B Opt. Grade 92 fatigue cycles to failure within the scatter of

available Grade 91 literature data

2.0

Strain Range (%)
H
o

Note: All comparison data are 0.5

estimates from the literature
Note: JAEA reference is ASME STP-
NU-018-2009

X [

Opt. Grade 92 @
|

M G91 - Nagesha
G91 Kim & Wertman
¥ G91 - Shankar

G91- JAEA

X

Cycles to Failure (N;)




ENERGY 600C Creep-Fatigue: Cycles to Fallur_e V.
Hold Time

Nuclear Energy

Lower strain range CF testing and shorter hold time testing ongoing for Heat 8T
B CF cycles to failure degraded relative to continuous cycle fatigue

‘ G92-2
T & Heat 4T
- Heat 8T
) &
2 b ¢
2 ¢
g
g
3 t
2 2
o]
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[7,]
o
(&)
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T T T 1
0 10 20 30 40

Hold Time (min)
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Thermal Aging and Sodium Compatibility
of Opt Grade 92

Nuclear Energy

M Effects of long-term thermal aging on tensile properties of Opt Grade 92 were
evaluated.

B The microstructural evolution is evaluated by using ThermoCalc and DICTRA to
predict the microstructures over long times.

B Accelerated aging experiments are conducted to validate the calculated
morphologies which will enable assessment of long-term performance.

B Thermal aging at 650C resulted in a decrease in the tensile strength

B Sodium exposure at 650C has a much stronger effect on tensile strength than
thermal exposure alone at 650C.

B Precipitation of Laves phase was observed in all sodium-exposed specimens of
and could be the cause of strength reduction.

B Longer term aging and sodium exposures at 600 and 550C are continuing.

B Microstructural evaluations of the aged/exposed specimens will be made to
assess the long-term performance of these materials in SFRs.
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Alloy 709 Has Enhanced High Temperature
Strengths vs Reference Material (316H)

Nuclear Energy

1000 -

Stress, MPa

100 -

10

Tested at 700°C F NippOﬂ Steel
Seamless Tube
iy Jobie Data
| - o \
s . m‘*

= ~I I ***
Approx. 2X il
~

Increase in
Creep Strength =

~

316H ~

10

100 1,000 10,000 100,000

Creep Rupture life, h



ENERGY Capital Cost Reduction and Design
Advantages

Nuclear Energy

B Alloy 709 structural applications identified for AFR-100

— Core support structures, reactor vessel, primary and
secondary piping
B Alloy 709’'s higher strengths provide capital cost
reduction and design advantages over reference 316H
stainless steel throughout a broad temperature range
— Thinner walls
* Lower material quantities and reduced through-wall thermal gradients
— Higher allowable thermal gradients
 Potential for more compact component and plant configurations
— Smaller piping expansion loops
— Could open up opportunities for other design innovations
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B Alloy 709 allows greater thermal gradients as compared with 316H

B Results in prospect of eliminating costly add-on hardware instituted in
past designs to mitigate deficiency of 316H*
— French Phenix, Super Phenix; German SNR; U.S. FFTF, CRBR; Japanese MONJU

* Dhalla, A.K., (1991), “Recommended Practices in Elevated Temperature Design: A Compendium of Breeder
Reactor Experiences (1970-1987) - Volume Il Preliminary Design and Simplified Methods,” WRC Bulletin 363
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13 | Phems I, secondary sodnm | Observed sodium leakage af fhe mner shell to closing plate junchion
outlet header was resolved in Super Phenix with addition of a thermal mixing
device, thermal meulstion and toroidal expansion elements to

segion ¥ accommodate Large thermal expansion differences

14 | US.FETF shear key forzed ring | The caleulated strain cansed by thermal transient stress due to larze
diffarences in fhickness exceeded the allowable linut at the weld The
ring was reconfigured to move the pesk strain location away from the

weld area.
15 | CRBEP [HX primary sodium | Larze mramient temperahire difierences between the perforated sechion
inlet nozzle of the fubesheet and the surownd solid rim and shell resulted in

excessive strain and cresp-fitigue damage. The tubeshest rim was
scalloped to reduce ifs mass and the kzuckle radius was revised to
move the weld out of the highest stress region

16 | CRBRP prmary sodmmpump | Thermal chields, comvechoncell bamers, mimmized fhickness
vaniations and substiruting higher strength 31655 for 304SS were used
to ensure that operational clearances were maintained.

T7 | FFLF IFX primary closure seal | Thiz seal = required fo accommodate differential thermal mofion
befween fwo massive components. A series of design optimization
studies using ielastic analysis were required o finalize an acceptable
configuration

18 | FELF IFDX shexr key forged ring | The difference in thermal responze bafween the relstvaly thin shal
and omuch thicker forsad ring resulted in excessive cresp-fatizus
damage and excessive sirain even when evalusted with inelastic
amalysis. Since this was evaluated after the ring was fabricated,
changes in the geometry were not feasible. Heaters were applied to
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=

=

e

et

S o
o 1

==
S
e ore

et -

20 MONJU [HX upper tubesheet Transient temperature differences between the thin comical shroud and
the tubesheet cansed excessive thermal stresses and ratcheting when
amalyzed. A Balf scale test was performed in 3 tubecheet thermal
shock test facility which demonstrated non-ratcheting
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» Environmental effects (sodium,
irradiation)

Nuclear Energy

Elevated Temperature
Structural Design
(Construction)

Support NRC Licensing &
Plant Operation

1

« ASME Section lll Division 5, Verification and validation of ASME code rules
Subsection HBB (Class A) and SFR structural issues
HCB (Class B) High temperature flaw evaluations

NCA

Effort will be initiated in FY16 to
implement part of the Code qual. plan
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Creep-Fatigue Interaction
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304 and 216 stainless steels, | Removal of unnecessary conservatism in
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