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Motivation 

 Traditionally, microstructure and mechanical properties are measured separately; 

 Need new capability that measures microstructure and properties 

simultaneously; 

– Existing techniques, e.g. in situ straining with electron microscopy of small-scale 
specimens 

– New capability: in situ straining of lab-scale specimens with multiple probes 
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Microstructure 

(dislocation loops, extended 
dislocation structure, voids, 

He bubbles, phase 
transformation, etc.)  

Mechanical Properties 

(low-temperature 
embrittlement, irradiation 
creep, high-temperature 

embrittlement, irradiation-
assisted stress corrosion 

cracking) 

? 

Microstructure – Property Correlation 
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In situ Straining with High-Energy X-rays and Multiple Probes 
- Beamline 1-ID at Advanced Photon Source 

Far-field detectors 
• 4 GE 2x2k detectors 
• @1m: qmax~25 1/A 
• Center-hole (SAXS) 

• Near field-HEDM 
detector 

• Tomography 
• Conical slit 
• Lasers 

Very far-field detectors 
• 3 HR detectors 
• Trans-rotate for high q-coverage 

SAXS detector 
• HR detector 
• Filters & stop 

0 
1m 

4.5m 
5.5m 

6m 

High-energy, high-brilliance X-rays: 
• Deep penetration 

− mm-sized specimens 
− Suite of sample environments/stages 

• In situ, real-time studies 
Lab-scale 
mechanical test 



M23C6 

MX 

Wang, et al. Acta Mat. 62 (2014) 239; Li, et al. Acta 
Mat. 76 (2014) 381. 

Wide-angle X-Ray Scattering (WAXS) 

 Identify phases  

 Measure elastic moduli for individual (hkl) 
planes for each phase and temperature 
dependence 

 Measure lattice strain evolution, load 
partitioning among different phases during 
deformation to quantify strengthening effects 

 Measure dislocation density and subgrain 
structure evolution as a function of 
stress/strain to understand deformation 
mechanisms 



Small-angle X-ray Scattering (SAXS) 

Measure void formation and evolution 

Wang, et al. JNM 440 (2013) 81. 

Vertical 
scans 
along the 
gauge 

20C 

Void formation 
and grow during 
necking captured 
by SAXS 



High Energy Diffraction Microscopy (HEDM) 

 Three-dimensional, grain-scale, non-destructive 
characterization of microstructural and micromechanical response of individual 
grains within the bulk of a polycrystalline specimen. 

2D-detector 

50-100 keV 

incident 
beam 

bulk 
sample 

• Thousands of grains in mm-size samples  
• Near-field HEDM: grain shape, orientation 
• Far-field HEDM: strain, orientation 

FEM simulation of von Mises stress in 
a Ti alloy sample loaded to 500 MPa. 
(Ludwig, et al, MSE A524 (2009)) 



X-ray Tomography 

 Nondestructive technique for visualizing internal microstructure within a material 

 Provide 3D images of the internal structure (pores, voids, cracks, etc.) in a material 
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Absorption Tomography provides 
information due to electron density, 
revealing presence of voids, cracks, etc.  
(by AFRL, unpulished) 

X-ray tomography of thermally-fatigue 
GlidCop specimen measured at APS 
beamline 1-ID. 
(A. Khounsary et al. J. Phys 425 (2013) 212015) 



In situ Characterization of F-M G92 Steel during 

Tensile Deformation by WAXS/SAXS/Radiography 
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Voids 

SAXS captured void 
formation and 
evolution during 
necking 

Diffraction peak 
broadening revealed 
dislocation 
evolution during 
deformation 

Diffraction peak shifts 
revealed load 
partitioning among 
phases during 
deformation 
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Project Goal - 

In situ Characterization under Thermal-Mechanical Loading 

with High-Energy X-rays of Neutron-Irradiated Specimens 

Macroscale: stress-strain 

behavior 
Mesoscale: diffraction microscopy 

& tomography Nanoscale: WAXS and SAXS 

Irradiated  
sample  
containment 

(Schuren, et al 2014, pre-publication) 
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In situ X-ray Radiated Materials Straining/Annealing 

(iRadMat) Apparatus 

Huber high-
precision 
rotation 
stage 

Internal Rotation 

Unique x-ray sample environment 
• Internal radiation shielding for activated samples 
• Temperature:  <1000°C 
• Vacuum: 1x10-5 Torr 
• Tension, creep, fatigue loading 
• In-grip rotation for tomography & diffraction microscopy 

Vacuum furnace with Integrated Radiation Shielding 

W plates & shutters 

Furnace 
containment 

iRadMat Beamline 1-ID 
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Pack into a shielded 
containment and survey. 

Transfer between IML and APS 

Specimen installation and 
encapsulation at Irradiated 
Materials Laboratory (IML) in 
Bldg. 212, ANL 

Challenge – Handling Activated Specimen 

Advanced Photon Source (APS) Unpacking and loading at 1-ID 
beamline 

On-site Radiological Facility - Irradiated Materials Lab (IML) 



Encapsulation for Activated Tensile Specimen 
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W shielding  
plates 

Double-layered 
Kapton tubes 

Irradiated 
Sample 

RT tensile test of an 
irradiated specimen 

For low-activity specimens 

For high-activity specimens – additional local shielding 



In situ Straining of Neutron-Irradiated Fe-9Cr Alloy 
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• EBSD mapping of control sample shows an 
average grain size of 180 µm. 
 
 

• TEM characterization of defect structures shows: 
• no visible irr-induced defects in 300oC-

0.01dpa sample; 
• nano-sized loops  in 450oC-0.01dpa 

specimen sample. 

Samples Non-
irradiated 

Irradiated Irradiated 

Tirr (
oC) N/A 300 450 

dose (dpa) N/A 0.01 0.01 

U. Illinois Irradiation Experiment at ATR 

Unirradiated 300oC, 0.01 dpa 450oC, 0.01 dpa 

W-Y Chen, Ph.D. thesis, 2014 



Stress-Strain Behavior of Neutron-Irradiated Fe-9Cr 
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𝜎 = 76.82 + 63.02𝜀0.380 

𝜎 = 128.43 + 100.20𝜀0.254 

𝜎 = 214.86 + 88.06𝜀0.255 

• Stress-strain curves recorded during in-situ X-ray measurement 

Work-hardening: 



Wide-angle X-ray Scattering during Deformation 
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300oC irr, as received 300oC irr, after deformation 

saturated 

X-ray energy: E = 122keV 
X-ray beam size=0.2x0.2mm2 

Strain rate ~ 1-3x10-5 /sec 
-> duration for 1 test: ~5h 
 

1 data point averages over 30 
measurements, covering 0.5mm3 volume 
of about 100 grains. 



Lattice Strain Evolution during Tensile Deformation 
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Lattice strain 
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Fe-9Cr 
unirradiated 

Fe-9Cr 
300oC, 0.01 dpa 

Fe-9Cr 
450oC, 0.01 dpa 

Lattice constant 



Peak Broadening during Tensile Deformation 
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• Peak broadening data are being analyzed to obtain dislocation density and 
dislocation structure as a function of strain. 

• Small-angle X-ray scattering data are to be analyzed. 



Ex situ 3D Characterization of Irradiated Specimens 
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X-ray Energy: E=70keV 
Beam size=2x0.2mm2 

4 layers measured 

Far-field High-Energy Diffraction Microscopy (ff-HEDM) 

Specimen holder for 
encapsulated tensile 
specimen (left) and for 
encapsulated TEM 
specimen (right) 



ff-HEDM on Deformed, 300oC/0.01 dpa n-irradiated 

Fe-9Cr Alloy 
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Deformed region 

Un-deformed region 



ff-HEDM of Neutron-Irradiated HT-UPS Austenitic Steel 
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 Sample  Condition Dimensions 

AR As-received. 1.7 ×2 ×0.15 mm 

irr 3 dpa, 500oC  3 mm dia × 0.16 mm t 

irr+ann 3 dpa, 500oC + annealing at 

600oC for 1 h 

3 mm dia × 0.2 mm t 



Outlook – in situ 4D Characterization 

 Integrate in situ straining/annealing capability with 3D characterization techniques 
for 4D (time- and spatial-resolved) characterization of neutron-irradiated 
specimens under thermal-mechanical loading. 
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Special Thanks to APS Beamline 1-ID 


