

LWRS Cable Aging and Cable NDE

Leonard S. Fifield, PhD Pacific Northwest National Laboratory

DOE-NE Materials Crosscut Coordination Meeting September 16, 2015, Webinar

Light Water Reactor Sustainability R&D Program

Cable Research Collaboration

LWRS

- Keith Leonard (ORNL)
- Thomas Rosseel (ORNL)

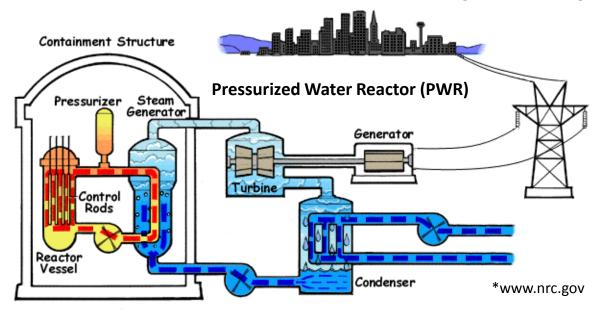
Cable Aging

Robert Duckworth (ORNL)

Cable NDE

- S.W. (Bill) Glass (PNNL)
- Pradeep Ramuhalli (PNNL)

Goal: maximize impact


Non-LWRS

- Andrew Mantey (EPRI)
- Sheila Ray (NRC)
- Darrell Murdock (NRC)
- Robert Bernstein (SNL)
- Stephanie Watson (NIST)
- Nicola Bowler (ISU) (NEUP)
- Gary Harmon (AMS Corp)

Nuclear Power Plants (NPPs)

- U.S. NPPs contain thousands of miles of electrical cable in hundreds of types and sizes
- Ramifications of cable failure can be significant, especially for cables connecting to: off-site power, emergency service water and emergency diesel generators

Cables in Nuclear Power Plants

Application

- Instrument & Control (81%)
- Power cables (14%)
- Communication (5%)

Design voltage

Low (≤2kV), Med, High (>46kV)

Construction

- Cables Conductor, Insulation, Jacket
- Terminations
- Splices

Multi Conductor

*SAND 96-0344

Polymer Cable Materials

Insulation

XLPE - Cross-linked polyethylene

EPR - Ethylene-propylene (diene) rubber

SiR - Silicone rubber

Cables in US Plants¹
36% of cables are XLPE
36% of cables are EPR

5% of cables are SiR

<u>Jacketing</u>

Hypalon® - Chlorosulfonated polyethylene (CSPE)

Neoprene - Polychloroprene (CR)

CPE - Chlorinated Polyethylene Elastomer

Vinyl - Poly(vinyl chloride) (PVC)

Cables in Containment² 90% of units have XLPE

90% of units have XLPE

70% of units have EPR 30% of units have SiR

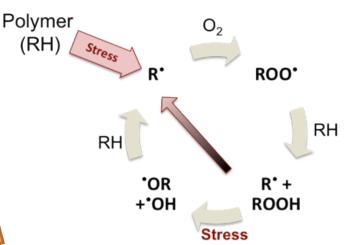
XLPE insulation

CSPE jacket

¹NUREG/CR-7153, Vol.5 2013 ²EPRI TR-103841, Rev.1 1994

Polymer Degradation (Aging)

Environmental Stress


- Gamma Radiation
- Heat
- Light
- Moisture
- Vibration

Chemical Changes

- Chain scission
- Cross-linking
- Loss of plasticizer
- Loss of anti-oxidant

Material Changes

- Mechanical (i.e. brittleness)
- Electrical (i.e. resistance)
- Physical (i.e. density)

Cable Aging/NDE Task Activities Map to MAaD Targets

Activities

Cable Aging

- Aging Methods
- Materials Characterization
- Degradation Pathways
- Models of Aging (Accelerated vs. Long Term)
- Cable Rejuvenation

Cable NDE

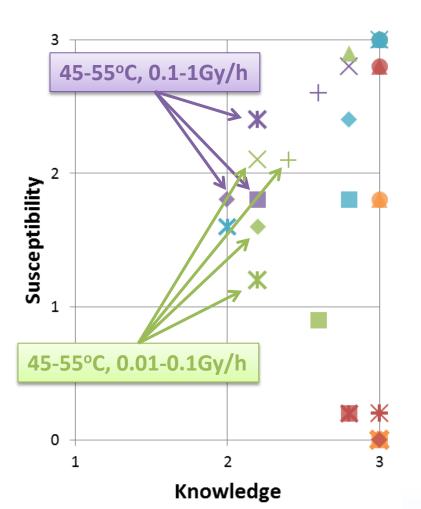
- Key Indicators
- Current Methods
- New Methods
- Predictive Models

- Measurements of degradation
- Mechanisms of degradation
- Modeling and simulation
- Monitoring
- Mitigation strategies

Cable Degradation Knowledge Gaps:

- Diffusion limited oxidation (DLO)
 - How to improve correlation between field and accelerated aging?
- Inverse temperature effects (ITE)
 - What dose/temp. combinations avoid ITE in accelerated aging?
- Thermal/radiation exposure
 - At what dose does thermal damage dominate radiation damage?
- Synergistic effects
 - What is the effect of rad/heat exposure sequence on aging?
- Acceptance criteria for characterization techniques
 - What should measured values be for acceptable qualified condition?

EMDA Cable PIRT Analysis provides insights for prioritized needs


Up to 35°C, 0 dose rate

Up to 35-50°C, up to 0.01 Gy/h (1 rad/h)

Up to 45-55°C, 0.01-0.1 Gy/h (1-10 rad/h)

Up to 45-55°C, 0.1-1 Gy/h (10-100 rad/h)

Up to 60-90°C, 0 dose rate

XLPO

◆ EPR-FR

▲ EPR/neoprene

X EPR/CSPE

X SiR

Neoprene

+ CSPE

EMDA=Expanded Materials Degradation Assessment, NUREG/CR-7153, Vol. 5
PIRT=Phenomena Identification and Ranking Technique

Gamma Exposure Capabilities

PNNL

High Exposure Facility (HEF)

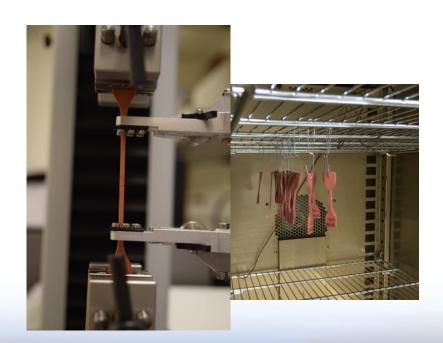

- Temperature control through mechanical convection ovens
- Dose rates up to 1000Gy/h

ORNL

High Flux Isotope Reactor (HFIR) Spent Fuel Gamma Irradiation Facility (GIF)

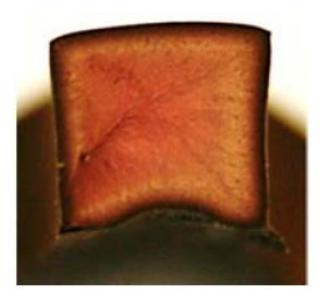
- Dose rates from 10Gy/h to 100kGy/h
 Co-60 Irradiator
- Uniform dose rate of 140 Gy/h

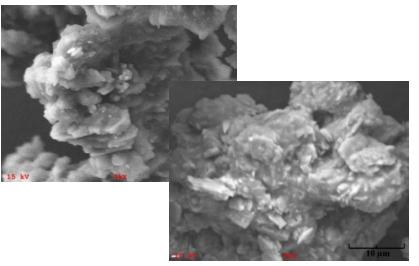
Polymer Aging Characterization and Testing Laboratory at PNNL


Aging

- Advanced protocol ovens with temperature logging
- Dedicated dynamic mechanical analyzer (DMA) for in-situ aging

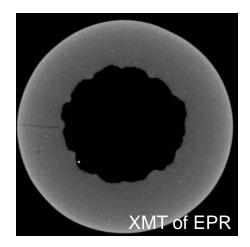
Test and Characterization

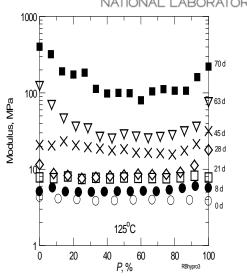

- Test stand with contact extensometer
- Modulated differential scanning calorimeter (M-DSC)
- Digital microscope
- Photographic documention booth



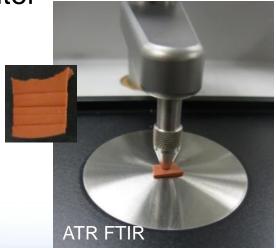
Inhomogeneous Aging Study Understanding of Mechanisms

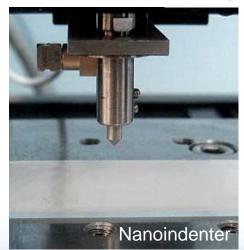
- Diffusion Limited Oxidation
- Nucleation of Degradation
- Effect of Sample Geometry



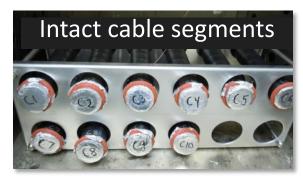


Microstructure Analysis Imaging and Quantifying Degradation Pacific Northwest


- Defect mapping
 - X-ray microtomography
- Chemical mapping
 - TOF-SIMS/XPS
 - X-ray diffraction
 - FTIR/Raman
- Mechanical mapping

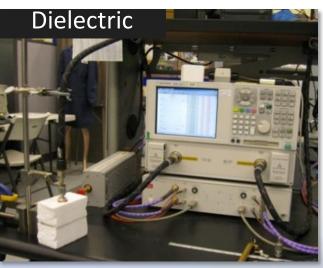

Nanoindenter

*NUREG/CR-7153, Vol. 5



Non-Destructive Evaluation (NDE) of Cable Remaining Useful Life

Pacific Northwest
NATIONAL LABORATORY


- Coordination Aging and NDE
- Sensitivity analysis of key indicators
- Correlation of destructive and nondestructive data
- Assessment of NDE methods

Nuclear Power Plant Cable Aging Management Strategy

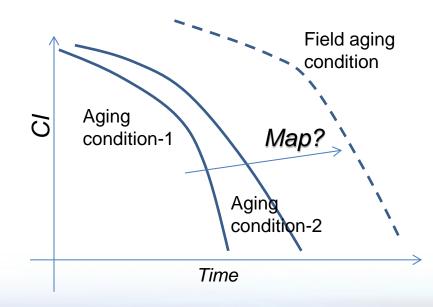
- Evaluate for susceptibility focus on rooms/areas with highest temp and highest radiation. Also give special attention to most safety critical components. Select samples for test.
- Visual walk-down looking for visible indications on jackets.
- FDR, Tan-Delta and other bulk tests looking for worst case areas of degradation on sample of cables.
- Local specific NDE (indenter, capacitance, UT, ...) at local area identified with bulk tests.
- Repair/replace where indicated. Consider also replacement in similar environments even if no degradation is observed.

Condition-Monitoring Techniques for Electric Cables Used in NPPs (NRC Reg Guide 1.218)

Test	Applicability	Ends	Damage	Comment
DC High Pot/ Step Voltage	Cable – 2/C	Both	Maybe	Not trendable
Very Low Freq. Tan-Delta	Cable – 2/C	Both	Yes	Not trendable
Visual / Illum. Borescope	Visible exterior	No	No	Not quantitative
Indenter	Local Jacket	No	No	Trendable
Dielectric Loss Dissipation	Cable – 2/C	Yes	No	Not for long/lrge cble
Insulation Resistance	Cable – 2/C	Both	No	Not trendble/uncrtain
Partial Discharge	Cable – 2/C	Both	Yes	Locates weak point
Time Domain Reflectometry	Cable – 2/C	Both	No	Limited val for insul.
Frequency Domain Reflectometry	Cable – 2/C	Maybe	No	Can ID local flaws
IR Thermography	Under load	No	No	Weak signal for insul.

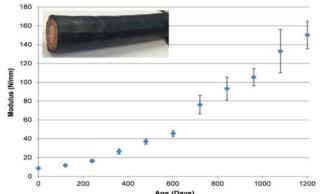
Cable Health Evaluation

- Destructive test vs. Nondestructive
- Full length cable vs. locally accessible point
- In-situ vs ex-situ (in place or sample to lab)
- Disconnected vs connected/energized
- Shielded vs non-shielded
- Multi vs single conductor

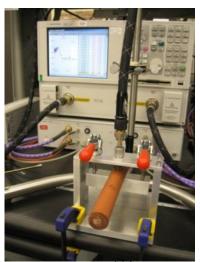


Cable NDE and Condition Monitoring Scope:

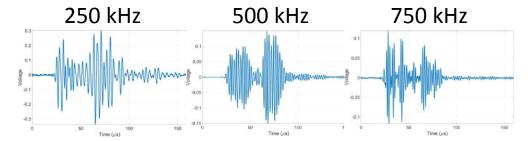
- Identify key indicators of aging
 - Determine measurements capable of "early warning" of condition degradation
 - Correlate aging with macroscopic material properties
- Advance state-of-the-art and develop new/transformational NDE methods
 - Enable in-situ cable condition measurements
 - Demonstrate on laboratory-aged and fielded cables
- Develop models for predicting condition-based remaining life
 - Enable condition-based qualification methodology
 - Use cable condition index data, conditionbased aging models



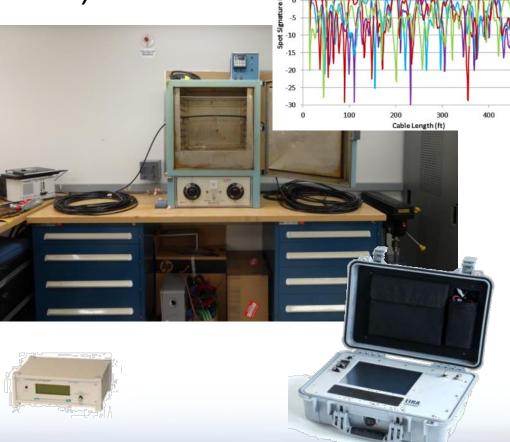
Local Spot Measurements


Pacific Northwest
NATIONAL LABORATORY

- Indenter
- Capacitance
- Acoustic



Dielectric Constant


Full Cable Measurements

Pacific Northwest
NATIONAL LABORATORY

500 ft coax cable with 6 inch defect at 200 ft

-0.07% Change in C

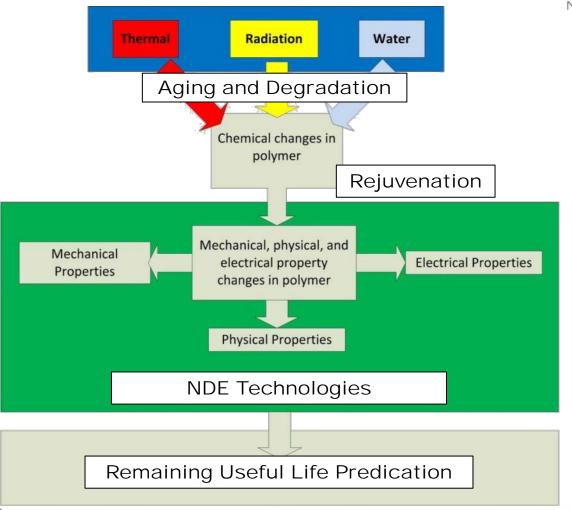
- Frequency Domain Reflectometry
- Dissipation Factor (tan δ)
- High Pot
- Partial Discharge

Cable NDE and Condition Monitoring Objectives: Pacific Northwest NATIONAL LABORATORY

Develop/Demonstrate NDE techniques that provide <u>sensitive</u>, <u>in-situ</u> assessment of cable performance with the ability to:

- Reduce uncertainty in safety margins
- Enable informed replacement planning
- Provide confidence in continued use

Cable Program Summary


Pacific Northwest

Cable Stressors

Chemical Changes

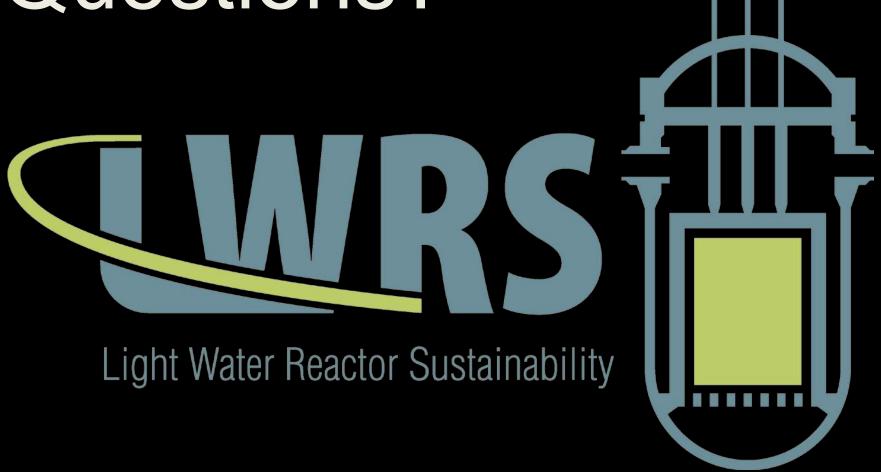
Changes in Properties

Changes in Performance over Time

GAPS

Detailed Understanding

Effective Treatments


Key indicators of cable aging

Transformational NDE

Methods for Life Prediction

*LWRS NDE R&D Roadmap PNNL-21731 2012

Questions?

Leo.Fifield@pnnl.gov