Coatings and Process Development for Reduced Energy Automotive OEM Manufacturing

DE-EE0005777

PPG Industries, Inc. / Dürr Systems USA, Inc. & North Dakota State University

January 1, 2015 – December 31, 2017

John Furar, PPG Industries, Inc.

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C.

May 28-29, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

• Develop coatings, processes and facility design to reduce energy consumption in automotive OEM paint shops

70% of the automotive assembly plant energy is consumed in the paint shop

- Technical Barriers
 - Maintaining coating properties at lower temperature cure
 - Low temperature cross-link chemistries not commercial
 - Adoption of waterborne technologies and VOC restrictions
 - Process optimization compatibility with "Brownfield" conversion

Technical Approach

Low Temperature Cure Coating Systems

- Development of new low temperature cure polymers and formulas
- Five candidate chemistries identified
- Oven temperature reduction 140°C → <100°C
- Target layers include; Primer, Basecoat and Clearcoat

Energy Benefits

- Lower Oven Temperature
- Reduction in Waste Heat
- Faster Time Between Layer Applications
 - Lowers Fresh Air Demand in Oven
- Reduced Temperature/Humidity Control Requirements
- Enable Lightweighting– Temperature Sensitive Substrates

Technical Approach – Conventional Process

Technical Approach – PPG B1:B2 Compact Process

Technical Approach

Body in white Phosphate/Pretreatment Electrocoat **Electrocoat Oven Dry Sand** Liquid Applied Sound Deadener **Sealer Application** 20' x 170°C BC prebake **Solvent Clearcoat B1:B2** Compact Process Basecoats 5' x 80°C CC Oven Spot / Metal Repair 30' x 100°C **Inspection Booth** Solvent Wipe /Tack Off Repro Stand **TRIM**

- **Smaller manufacturing footprint**
- ***** Lower energy demand for conditioned air
- Lower capital cost

Transition and Deployment

Automotive Industry

PPG Innovations

- Cationic Electrodeposition
- Powder Clearcoat
- B1:B2 Process

- Enable application temperature sensitive substrates and lightweighting
- Staged commercialization to manage risk
 - Low temperature application on existing lines
 - Monobooth conversion in target plant
 - Implementation dependent on automotive facility capital depreciation plans

Measure of Success

- Development of low temperature cure topcoat systems that meet performance property milestones
- Lab scale prototype validation of a consolidated topcoat booth design and associated energy saving
- OEM briefings are included in budget period go/no-go decisions and final deliverables
- Identification of an OEM partner for continued development and commercialization
- Project proposal identified 18 Tbtu/year savings based on 2012
 US vehicle projection
- Dürr Systems will quantify energy calculations of material and process improvements relative to current baseline

Measure of Success - Go/No Go Criteria

Budget Period 1

- 1) Formulation <100°C cure
 Hardness- 75
 Solvent double rubs 85
 Longwave 25
 Shortwave 35
 Flop index 7.0
 DOI 65
- 2) OEM project briefing

Budget Period 2

- 1) Formulation <100°C cure
 Hardness- 100
 Solvent double rubs 100
 Longwave 15
 Shortwave 20
 Flop index 8.5
 DOI 80
- 2) OEM project briefing
- 3) Process conditions
 Fluid delivery rates equal
 current range
 Humidity range 50% 80%
 Temp. range 70°C 100°C

Budget Period 3

- 1) Formulation <100°C cure
 Hardness- 105
 Solvent double rubs 100
 Longwave –12
 Shortwave 20
 Flop index 9.5
 DOI 85
- 2) OEM project briefing
- 3) Process validation
 ull scale body panel
 application demonstrating
 prototype process and
 material improvements

Project Management & Budget

BP1

Develop low temperature cure polymers and formulas

- 15 Mo
- Jan15-Mar16

BP3

Lab scale validation of materials and

- 10 Mo process
- Mar17-Dec17

Engineering and

manufacture of lab BP2 scale booth and oven

- designs 11 Mo
- Apr16-Feb17

Title	Milestone	Description	Quarter
Synthesis	M1.1.1	Physical data on polymer samples	Q1
Initial Formulation	M1.2.1	Solid color basecoat/clearcoat application	Q2
Monobooth Coatings	M1.3.1	Metallic color basecoat/clearcoat applications	Q3
Monobooth Process	M1.3.2	Process variables defined	Q3
Combinatorial catalysts	M2.1	Catalyst investigations through combinatorial techniques	Q4
Design Principles	M3.3.1	Coating system design strategies communicated to equipment supplier	Q5
Chemistry Selection	M4.1	Coating chemistry down-selection	Q5
Combinatorial coatings	M6.1	Coating investigations through combinatorial techniques	Q6
Equipment Design	M7.4.1	Oven/booth equipment requirements defined	Q7
Equipment Fabrication	M7.5.1	Fabrication of lab scale equipment	Q8
Equipment Installation	M9.1	Equipment installation at PPG labs	Q9
Lab Scale simulations	M10.1	Demonstration using newly fabricated monobooth concept	Q10
System Optimization	M11.1	Coating systems demonstrated using optimized equipment and materials	Q11
Final reporting	M12.1	Final Reporting for entire project	Q12

Total Project Budget				
DOE Investment	\$2,972,349			
Cost Share	\$1,273,722			
Project Total	\$4,246,071			

Results and Accomplishments

Project mobilization complete

 Lab studies of initial low temperature cure coating formulations demonstrating positive results