

ARPA-E Electricity Research Programs

Tim Heidel

Program Director

Advanced Research Projects Agency – Energy (ARPA-E)

U.S. Department of Energy

DOE Electricity Advisory Committee Meeting Arlington, VA, March 26, 2015

The ARPA-E Mission

Ensure America's

- National Security
- Economic Security
- Energy Security
- Technological Competiveness

Catalyze and support the development of transformational, disruptive energy technologies

U.S. Installed Solar Capacity

Variability & Uncertainty

Variability & Uncertainty

Evolution of Grid Requirements

New Potential Sources of Network Flexibility

 Advances in power electronics, computational technologies, and mathematics offer new opportunities for optimizing grid power flows.

Power Flow Controllers

- AC Power Flow Controllers
- High Voltage DC Systems

Transmission Topology Optimization

- Optimal line switching
- Corrective switching actions

Energy Storage Optimization

- Scheduling energy flows
- Coordination of diverse storage assets

Responsive Demands

- Scheduling large loads (eg. industrial loads)
- Mobilize large numbers of small assets

GENI Program

Green Electricity Network Integration

Goals

- Enable 40% variable generation penetration
- > 10x reduction in power flow control hardware (target < \$0.04/W)
- > 4x reduction in HVDC terminal/line cost relative to state-of-the-art

Kickoff Year	2011			
Projects	15			
Total Investment	\$39 Million			
Program Director	Tim Heidel (Rajeev Ram)			

Project Categories

- Power Flow Controllers
 - Power flow controllers for meshed AC grids.
 - Multi-terminal HVDC network technologies.
- Grid Optimization
 - Optimization of power grid operation; incorporation of uncertainty into operations; distributed control and increasing customer optimization.

Power Flow Control White Space

- Historically, power flow control devices have typically been manually dispatched to correct local problems.
- High costs and reliability problems are often cited against the widespread installation and use of power flow control devices.
- <u>New hardware</u> innovations that can substantially reduce the cost of power flow control devices are needed
 - Fractionally rated converters (limited power device ratings).
 - Modular designs (increases manufacturability).
 - Series connected equipment with fail normal designs (gradual degradation).
- <u>New software</u> advances that exploit new developments in optimization and computational technologies are needed to enable the real time coordinated, optimized dispatch of many power flow control devices.

Power Flow Controllers

Advances in Power Electronics (Components and Circuits)*

^{*} ARPA-E's ADEPT, Solar ADEPT, and SWITCHES programs are funding some of these advances.

Grid Optimization Whitespace

- Existing grid optimization tools do not explicitly account for variability and uncertainty
- Emerging need/opportunity to coordinate larger numbers of distributed resources
- Recent advances enable more robust, reliable control of the electricity grid despite:
 - The limits of state estimation (finite numbers of sensors, limited models)
 - Incomplete and imperfect information flow (due to latency of communications)
 - Constrained computational resources for dynamic decision support (power flow optimization is mathematically (NP) hard)
 - Inherent uncertainties in price/market mediated transactions
 - Physical constraints to control (cost, performance, and reliability of power electronics).

Grid Optimization Opportunities

Advanced Computing Architectures & Cloud Computing Infrastructure

GENI Portfolio

Power Flow Control Hardware

Power flow control for the Grid

Distributed Series Reactor

Transformerless UPFC

HVDC Hardware

HVDC EPR Cable

HVDC Multi-terminal **Network Converters**

Topology Control (Line Switching)

Economic Optimization

Cloud Computing & Big Data

Cornell University Resilient Cloud / **Data Replication**

Power System Optimization

Stochastic **Unit Commitment**

UNIVERSITY of WASHINGTON

Energy Storage

Distributed Grid Optimization (Prosumers)

Tech

Georgia

GENI Program Participants

GENI Project Examples

Magnetic Amplifier for Power Flow Control

- Inserts a controlled variable inductance in the line
- Power electronics isolated from the HV line
- Low power dc source controls the high voltage ac inductance
- Smooth reactance regulation, acceptable harmonics
- Uses standard transformer manufacturing methods

Magnetic Amplifier Development Timeline

(2012) 480 V 200 A 3-phase Laboratory Proof of Concept (2013) 480 V Improved Design With 4-Limb Core

Demonstration:

115kV, 1500 A, 3phase CVSR to be installed for field demonstration on the Bonneville Power Administration (BPA) transmission system at Sacajawea Substation, WA in 2015.

Highly Dispatchable, Distributed Demand Response

Objectives:

- Develop scalable SaaS platform (DROMS-RT) for optimization and management of Demand Response (DR) programs.
- Standard communications protocols for real-time DR signaling.
- Utilize machine learning to forecast and characterize customer response to DR signals.
- Optimization of economic dispatch with DR.

Potential Impact:

- Enable Real-Time predictive analytics on data from grid customers & sensors.
- Provide 90% reduction in the cost of operating DR programs by eliminating upfront IT infrastructure costs for utilities.
- Increase the overall efficiency of DR operations by 30-50%.

Project Accomplishments

- Developed scalable cloud-based platform for managing and analyzing big-data sets for energy applications.
- Demonstrated highly parallel machine learning engine capable of processing >1M forecasts on a rolling basis every 10 min.
- Deployed commercial DR programs up to 70K customers.

Post ARPA-E Goal:

"Energy Data Platform": 10X Reduction in the Cost and Time to Market of Developing New IT/OT Apps

Transmission Topology Control Algorithms (TCA)

Objectives:

 Develop fast optimization, contingency analysis and stability evaluation algorithms to allow grid operators to optimize transmission topology (line switching) in real time.

Potential Impact:

- Significantly lower generation costs
- Provide additional controls to manage congestion.
- Enable higher levels of renewable generation.

Accomplishments:

- Developed detailed model of PJM historical operating hours (data supplied by PJM)
- Developed tractable topology control algorithms using sensitivity-based heuristics and a reduced MIP formulation of the TC problem. Practical solution times reached (below 5 minutes in PJM).
- Developed fast state estimation and transient stability algorithms to support the TC decisions

Estimated TCA Benefits

- Production cost savings in PJM RT markets under 2010 conditions were estimated to be > \$100 million/year
- Savings of over 50% of Cost of Congestion

(Based on simulation results for three historical weeks)

Production Cost Savings = production cost without TCA (full topology)

- production costs with TCA

Cost of Congestion = production cost with transmission constraints

- production costs without transmission constraints

- Hybrid historical-high renewables simulation cases for PJM
 - One power flow snapshot per hour for three representative historical weeks in 2010 (one per season)
 - Renewables data from PJM Renewable Integration Study: 30% Low Off-shore Best sites On-shore Scenario
- Renewable curtailments were reduced on average by 40%

Renewable curtailment reductions with Topology
Control Algorithms (Winter Week)

NODES

Network Optimized Distributed Energy Systems

Mission

Reliably manage dynamic changes in the grid by leveraging flexible load and Distributed Energy Resources' (DERs) capability to provide ancillary services to the electric grid at different time scales.

Program Director	Dr. Sonja Glavaski
Year	2015
Projects	TBD
Anticipated Investment	\$30 Million

Goals

- Enable renewables penetration at > 50%
- Improve the overall efficiency and reliability of the grid
- Reduce CO₂ emissions (renewables ↑, reserves ↓)
- Increase penetration of Distributed Generation (DG)

Technical Challenges

- Dispatching both bulk and distributed generation
- Proactively shaping load over different time scales
- Coordinating consumers and generation operation
- Distributed management of heterogeneous resources
- Guaranteeing customers' QoS

Project Categories	Response Time	Ramp Time	Duration
Synthetic Frequency Response Reserves	< 2 sec	< 8 sec	> 30 sec
Synthetic Regulating Reserves	< 5 sec	< 5 min	> 30 min
Synthetic Ramping Reserves	< 10 min	< 30 min	> 3 hr

What happens after ARPA-E?

Ideas alone are often not enough

ARPA-E Tech-to-Market tries to improve yield

- + Value (Techno-economic analysis)
- + team (Stakeholder engagement)
- + implementation (Skills and Resources)

Products making an impact in the world

Energy Technology "Valleys of Death"

www.arpa-e.energy.gov