THE ROLE OF ENERGY INFRASTRUCTURE MODELING AND ANALYSIS (EIMA) IN ENERGY SYSTEMS RISK AND RESILIENCE

Tribal Energy Systems: Climate Preparedness and Resiliency
Tribal Leader Forum Series

Alice Lippert

Senior Technical Advisor

Office of Electricity Delivery and Energy Reliability (OE)

US Department of Energy

March 4, 2015

BRIEFING TOPICS

- Overview of Office of Electricity and Energy Reliability (OE) and EIMA
- Describe EIMA's Energy Systems Risk
 Predictive Capability subprogram
- Climate Change Analysis: OE Sea-Level Rise Pilot Project

OE ORGANIZATION

OE-1.1

Corporate Business Operations

Terri Lee
Chief
Operating
Officer

OE-1

Office of the Assistant Secretary

Patricia Hoffman Assistant Secretary

Vacant
Principal Deputy Assistant Secretary

OE-10

Power Systems Engineering Research and Development

Dan Ton
Acting Deputy
Assistant
Secretary

OE-20

National Electricity Delivery

Mary Beth Tighe
Acting Deputy
Assistant
Secretary

OE-30

Infrastructure Security and Energy Restoration

Tom Roston
Acting Deputy
Assistant
Secretary

OE-40

Energy Infrastructure Modeling and Analysis

David Ortiz
Deputy Assistant
Secretary

OE-50

Advanced Grid Integration

Hank Kenchington Deputy Assistant Secretary

EIMA SEEKS TO ADVANCE OPERATIONS AND PLANNING OF INTEGRATED ENERGY SYSTEMS

- Sponsor catalytic systems-level research and development (R&D) focused on advanced measurement and control of electricity systems
 - Advanced Modeling Grid Research (AMGR)
 - Transmission Reliability (TR)
- Build and maintain an Applied Analytical Capability
 - Energy Systems Risk and Predictive Capability (ESRPC)

ESRPC IMPROVES ENERGY INFRASTRUCTURE DECISIONS THROUGH EMPIRICAL RISK ANALYSIS

- Goal is to assess energy system risks and reliability in response to natural and man-made events
- Analytical products regarding energy systems include:
 - Impact and interdependency analyses
 - Vulnerability and choke-point analyses
 - Empirical risk assessments
- By informing key stakeholders, the benefits of the analysis are:
 - Improved preparedness, response, restoration, and recovery from energy system disruptions
 - Timely and relevant predictions for decision making
 - Energy system investments and operational improvements that appropriately value short - and long-term risks

COMPONENTS OF RISK ASSESSMENT

Threat and Hazard Analysis

 Identify relevant man-made and natural hazards or conditions

Vulnerability Analysis

 Determine vulnerability of energy assets, systems, and networks to relevant threats and hazards and supporting supply chains and inputs

Consequence Analysis

 Categorize and quantify the impact of damage or loss of an energy asset or system

Criticality Analysis

- Identify specific assets, systems, and networks that are critical for energy continuity goals
- Identify system dependencies from non-energy sectors

EXTREME WEATHER IS ONLY ONE THREAT

Seasonal extreme weather and natural disasters	Long-term risks and security	Events of national significance
Summer – Heat waves, wildfires, drought, and severe storms	Climate change	Political conventions
Fall – Hurricanes and drought	Cyber security	Presidential Inaugurations
Winter – Cold weather, ice storms, and heavy snow	Physical security	Super Bowls
Spring – Flooding and tornadoes	Latent and aging infrastructure	International summits
Earthquakes		

ENERGY SYSTEM CHALLENGES AND ANALYTIC DRIVERS

- Accommodating renewable and distributed resources
- Complying with environmental regulations
- Providing services reliably in the face of natural disasters and man-made disruptions
- Operating with tighter margins and interdependencies among sectors
- Responding quickly as loads respond to prices and variable generation increases
- Near- and long-term risks associated with global climate change and extreme weather

TECHNICAL, ECONOMIC, AND POLICY QUESTIONS

- What is likelihood of customers losing power?
- How many customers will lose power?
- What would be the likely length of the outage?
- What energy assets could be impacted?
- What is the scope of impact to the electric transmission system? Distribution system? Generators? Customers? Lifeline infrastructure?
- What is the scope of impact to NG and Petroleum assets?
- Are there downstream effects or interactions?

Winter Storm January 2015

OE SEA-LEVEL RISE PILOT STUDY

- Developed a <u>proof of concept</u> approach for identifying energy facilities exposed to sea level rise (SLR) through 2100. Approach is:
 - Flexible to accommodate multiple SLR scenarios
 - Accounts for global and local sea level changes
 - Scalable to the entire U.S. coastline
 - Makes use of existing, robust data sources
 - Able to incorporate results from regional studies
- Tested the concept on four metropolitan statistical areas (MSAs) – New York City, Miami, Houston, and Los Angeles
- Published Report entitled: Effect of Sea Level Rise on Energy Infrastructure in Four Major Metropolitan Areas, October, 2014
- Project is being expanded to four additional MSAs including storm surge assessment

http://www.energy.gov/oe/downloads/effect-sea-level-riseenergy-infrastructure-four-major-metropolitan-areas

THANK YOU!

Alice Lippert, DOE/OE

Alice.Lippert@hq.doe.gov

