

Off-Board Considerations

R. K. Ahluwalia, J-K Peng, and T. Q. Hua

DOE Materials-Based Hydrogen Storage Summit:
Defining Pathways for Onboard Automotive Applications

Golden, CO

January 27-28, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Off-Board Considerations

Impact of target 60% fuel cycle (well-to-engine) and 90% on-board storage system (tank-to-engine) efficiencies on hydrogen storage material properties

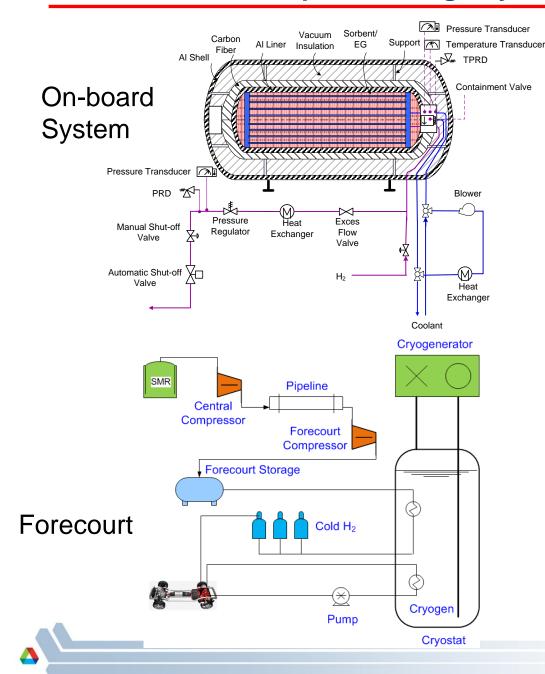
Reference well-to-tank (WTT) efficiencies of physical hydrogen storage

- Compressed hydrogen storage: 700 bar: 54.2%; 350 bar: 56.5%
- Cryo-compressed hydrogen storage: 41.1%
- Cold gas storage: 47.4%

Hydrogen storage in metal hydrides (not discussed in this presentation)

 Relationship between tank-to-engine (TTE) efficiency and thermodynamics of on-board reversible metal hydrides

Hydrogen storage in sorbents


- Lower limit on storage temperature imposed by off-board cryogenic cooling
- Acceptable material properties to satisfy on-board and off-board storage targets

Chemical hydrogen storage

- Proposed limits on thermodynamic properties (enthalpy and free energy of decomposition) for acceptable off-board regeneration efficiency
- Acceptable material properties to satisfy on-board and off-board storage targets

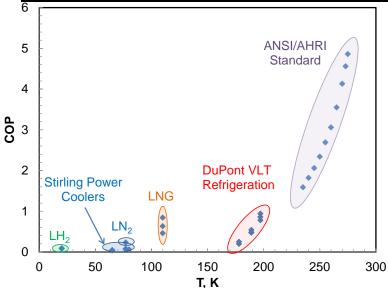
1. On-Board Sorption Storage System and Refueling Interface

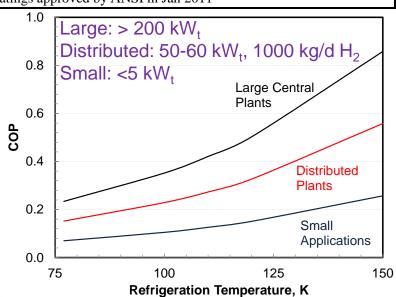
Key System Requirements

Storage Medium

- 5.6 kg recoverable H₂
- 5-bar minimum delivery P
- Structured Sorbent

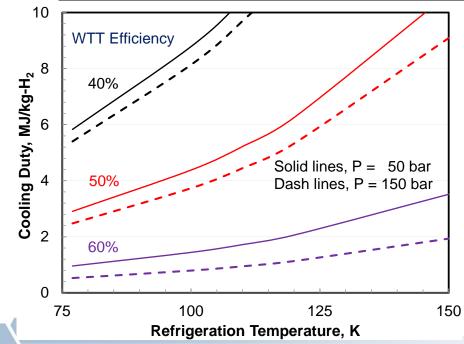
Type-3 Containment Vessel


- 2.25 safety factor
- 5,500 P and T cycles
- Toray 2550 MPa CF
- Al 6061-T6 alloy liner


Heat Transfer System

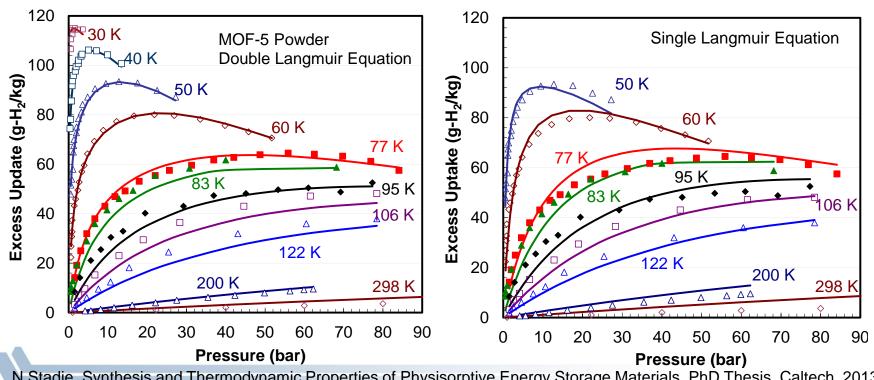
- 1.5 kg/min H₂ refueling rate
- 1.6 g/s H₂ min full flow rate
- MLVSI for 5 W heat inleakage

Coefficient of Performance (COP) of Cryogenic Systems


Refrigeration System	T, K	Capacity, kW _t	СОР	Comments
LH_2	20	200	0.081	Linde Ingolstadt (1992), 13.6 kWh/kg, 4.4 t/d
	20	225	0.092	Linde Leuna (2007), 11.9 kWh/kg, 4.9 t/d
LN_2	65	0.5 - 2.5	0.037 - 0.046	Stirling Power Cooler, Stirling Cryogenics
	77	0.8 - 7.3	0.070 - 0.077	Stirling Power Cooler, Stirling Cryogenics
	77	24000	0.234	Large air separation plant, 0.5 kWh/kg, 4860 t/d
LNG	110	17000	0.46 - 0.632	Kanfa Aragon N ₂ expander cycle, 0.4-0.55 kWh/kg, 3000 t/d
	110	17000	0.843	Aragon Dual Cascade mixed refrigerant, 0.3 kWh/kg, 3000 t/d
VLT: R-503	178 - 197	0.2 - 1.9	0.2 - 0.94	VLT refrigeration, DuPont, ozone depleter, higher capacity than R-13
VLT: R-13	178 - 197	0.1 - 1.2	0.25 - 0.78	DuPont, ozone depleter, to be phased out
VLT: HFC-23	189 - 197	0.1 - 1.6	0.86	Freon 23, CFC free, 10% higher energy consumption than R-503
Commercial	230 - 245	5	1.59 - 2.06	ANSI / AHRI standard refrigerated storage contaniners, cabinets
Refrigerated	250 - 260	5	2.34 - 3.06	ANSI/AHRI Standard 1210
Storage	265 - 275	5	3.55 - 4.86	Ratings approved by ANSI in Jan 2011

Well-to-Tank Efficiency

Process	Assumptions	Source
H ₂ Production at 20 bar	SMR at central plant, 73% efficiency	H2A
H ₂ compression at central plant	Compressor efficiency 88%	FCHtool
H ₂ delivery to forecourt	Pipeline, 50 bar pressure drop	HDSAM
H ₂ compression at forecourt	Compressor efficiency 65%	FCHtool
Cooling at forecourt	COP a function of temperature	Various
Electricity generation	35% efficiency	U.S. grid 2015
	8% transmission loss	GREET

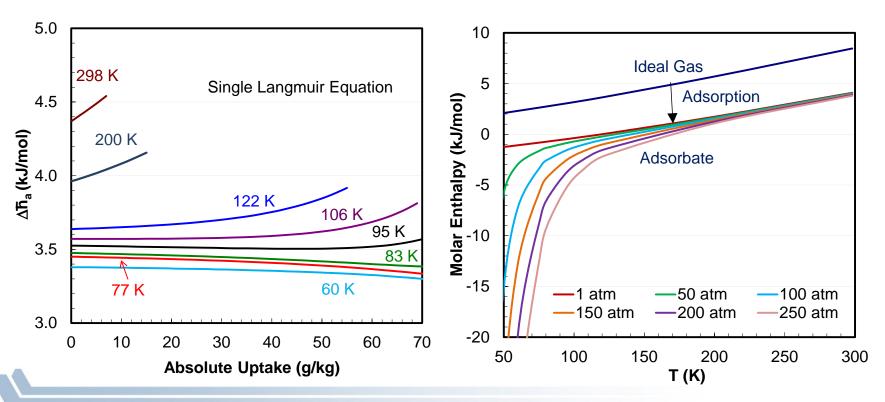

Allowable cooling duty (Q_c) determined by coolant temperature (T_c) and target WTT efficiency (η_{WTT})

- At 77 K, >4-fold reduction in Q_c if η_{WTT} raised from 40% to 60%
- For 50% η_{WTT}, >3-fold increase in Q_c if T_c raised from 77 K to 150 K

Adsorption Isotherms

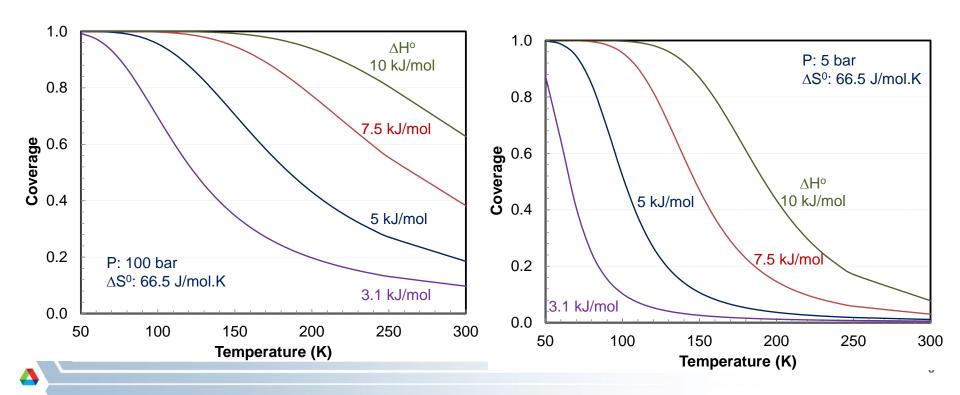
Generalized-Langmuir High-Pressure Adsorption Model (Stadie, 2013)

- Available data for H₂ adsorption on MOF-5 powder at 60-300 K (W. Zhou, J. Phys. Chem. C 2007, 111, 16131-16137) can be correlated with double-Langmuir equation (two types of invariant adsorption sites of different characteristic energies) with 7 parameters
- Single-Langmuir equation chosen for reverse engineering as it has only 4 parameters and can adequately represent adsorption data: 3 of the 4 parameters can be related to physical material properties



Thermodynamics of Adsorption

Material targets related to single-Langmuir equation for H₂ adsorption


- N_m : Sorption capacity (g-H₂/kg-sorbent), measure of active sites
- ΔH^0 : Enthalpy change on adsorption, 3.1 kJ/mol for MOF-5, related to isosteric heat of adsorption
- ΔS°: Entropy change, 66.5 J/mol/K, varies slightly with temperature
- V_a: Adsorption volume, 0.012 m³/kg, a fitted parameter

Advanced Sorbents

Advanced micro-porous adorbents with high specific area (sites) and $\Delta H^o > 5$ kJ/mol as well as low storage temperatures with sufficient temperature swings are needed.

- Storage temperature depends on ΔH^0 . Temperature below 150 K not needed if $\Delta H^0 > 7.5$ kJ/mol.
- Pressure swing alone may not be sufficient for >90% usable H_2 . Materials with $\Delta H^0 > 7.5$ kJ/mol will require temperature swing.

Study Parameters

Objective is to determine the peak excess adsorption at the reference LN_2 temperature and the bulk density needed to meet the system weight and volume targets at the storage temperature (T_s) with constraints on WTT efficiency, refueling time, and minimum full flow rate of H_2 .

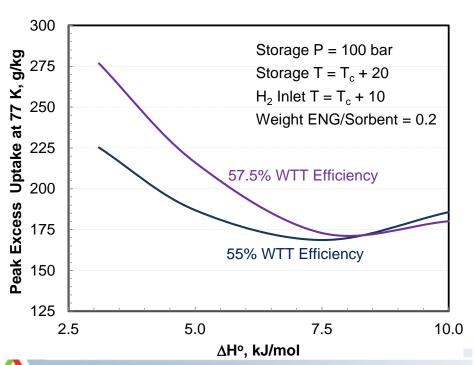
		Units	Reference	Range of	Comments
			Values	Values	
Sorbent	Excess Uptake at 77 K	g-H ₂ /kg	100	100-250	NU-100, ST023
	Enthalpy Change on Adsorption	kJ/mol	5.0	2.5 - 10	MOF-5, 3.1 kJ/mol, SLI
	Adsorption Volume	m³/kg	0.012	TBD	MOF-5
	Entropy Change on Adsorption	J/mol/K	66.5	TBD	MOF-5, SLI
	Bulk Density of Compact	kg/m ³	TBD	310 - 610	IJHE 37 (2012) 2723-2727
	Permeability	m^2	TBD	TBD	IJHE 38 (2013) 3268-3274
Operating	Off-board Coolant Temperature	K	77	77 - 200	LN2 - ANSI/ASHRI
Temperatures	Storage Temperature	K	TBD	TBD	
	Temperature Swing	K	TBD	TBD	
Operating	Storage Pressure	bar	100	50 - 200	
Pressures	Minimum Delivery Pressure	bar	5		DOE target
H ₂ Flow Rates	Refueling Rate	kg/min	1.5		DOE target
	Minimum Full Flow Rate	g/s	1.6		DOE target
Heat Transfer	ENG/Sorbent Mass Ratio		0.2	0.1 - 0.3	
	Number of HX Tubes		TBD	TBD	

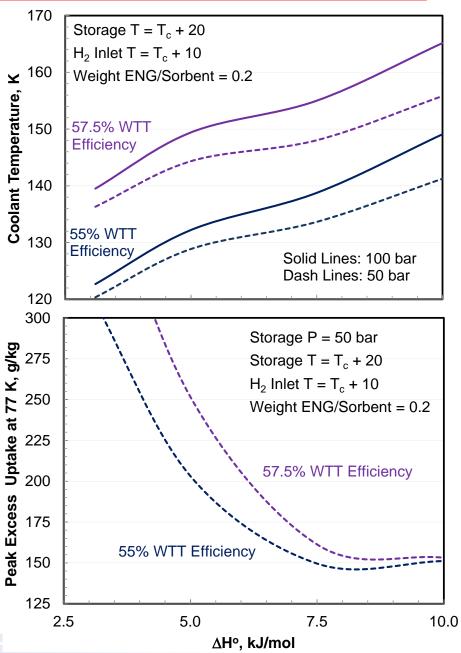
Reference Sorbent Targets

	Symbols	Levels ⁴	Material Targets	Related System Targets	Comments
Operating Pressures and	Temperature	es			
Storage Pressure	P_s	1	100 bar		
Storage Temperature	T _s	1	155 K		20 K above coolant temperature
Discharge Pressure	P_d	1	5 bar	5 bar minimum delivery pressure	In addition to pressure swing, 60-K
Temperature Swing	ΔT_s	1	60 K		ΔT_s allowed for 95% usable H ₂ .
Off-board Coolant	T _c	1	135 K	60% WTT efficiency	COP of distributed cryogenic system
Temperature					depends on T_c : 0.45 for T_c = 135 K.
Material Properties 1,2,3,4	•				
Excess Uptake at 77 K	N _{ex} (77 K)	1	190 g-H ₂ /kg-sorbent	5.5 wt% gravimetric capacity	NU-100 showed 100 g-H ₂ /kg-sorbent
					excess uptake at 77 K
Excess Uptake at Storage	$N_{ex}(P_s,T_s)$	1	120 g-H ₂ /kg-sorbent		Excess uptake (and kinetics) targets to
Pressure and Temperature					be met by sorbent mixed in with
					conductivity enhancement additives and
					compacted to target bulk density
Enthalpy Change on	DH°	1	5-7.5 kJ/mol		55% WTT for $\Delta H_0 = 5$ kJ/mol and
Adsorption					$T_c = 135 \text{ K}; \Delta H_o = 7.5 \text{ kJ/mol needed}$
					for 60% WTT efficiency.
Usable H ₂		2	95%		Percent of H ₂ released with pressure
					swing from P _s to P _d and temperature
					swing from T_s to $T_d = T_s + \Delta T_s$
Sorbent Bulk Density		1	420 kg/m ³	40 g/L volumetric capacity	Sorption targets are for compacts,
					not powders
Bed Thermal Conductivity		1	1 W/m.K	1.5 kg/min refueling rate	High conductivity additives, <20% by
					weight of sorbent, may be used.
Bed Permeability		2	TBD		
Charge Kinetics		3	30 g-H ₂ /kg-sorbent/min	1.5 kg/min refueling rate	Refueling from $N_{ex}(P_d, T_d)$ to $N_{ex}(P_s, T_s)$
					at 100 bar and 155 K; T _d = 215 K.
Discharge Kinetics		3	2.3 g-H ₂ /kg-sorbent/min	1.6 g/s minimum full flow rate	Desorption kinetics and minimum usable
					N _{ex} to be measured at 5 bar and 215 K.

^{1.} The sorbents must satisfy additional requirements for cycle life, purity of hydrogen desorbed, toxicity and safety, as specified in storage system targets.

^{2.} The sorbent must also be tolerant to impurities in fuel hydrogen feed. See the related SAE and ISO specifications for fuel cell quality hydrogen.

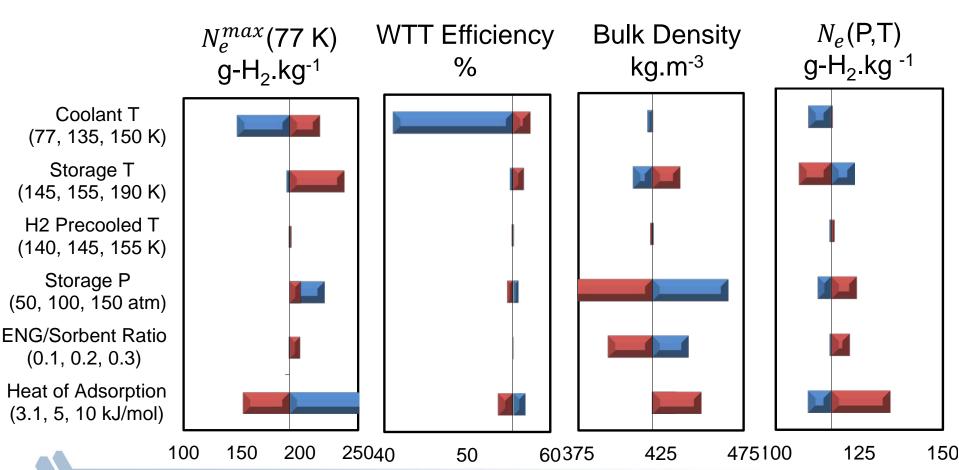

^{3.} Allwable cost of sorbents to be determined.


^{4.} Level 1 targets refer to primary requirements. Level 2 targets are also important but may be related to other requirements. Level 3 targets may be less important for sorbents.

Sensitivity Study – ∆H°

Adsorbents with $\Delta H^{\circ} > 7.5$ kJ/mol are especially appealing.

- Storage temperatures below 150 K not needed, actually counterproductive
- Advantageous to reduce the storage pressure to 50 bar



Summary

The promising sorbent should have >120 g-H₂ /kg excess sorption capacity at 150 K or higher temperature and 100 bar pressure, when compacted to 420 kg/m³ bulk density and mixed with 10-20% expanded natural graphite (or other conductivity enhancement materials)

2. Chemical Hydrogen Storage Materials

Class of storage materials that release hydrogen through a non-equilibrium process and, therefore, cannot be regenerated by reacting the dehydrogenated product with H₂ gas.

- Require off-board regeneration using electrochemical or catalytic processes
- 1. Negative free energy of decomposition
- Thermodynamically unstable at room temperature and are stabilized by extremely slow kinetics (alane, ammonia borane) or by other chemical means (addition of 3% NaOH to aqueous NaBH₄)
- 2. Positive free energy of decomposition
- Stable at room temperature but can be decomposed at elevated temperatures
- Require a catalyst for adequate kinetics at low temperatures
- APCI patent identifies many cyclic hydrocarbons including perhydrogenated nethyl carbazole
- On-board storage system efficiencies may be low since $\Delta H > T\Delta S$, i.e., $\Delta H > 38.8$ kJ/mol for $\Delta S = 130.2$ J/mol.K
- High off-board efficiencies may be possible since the regeneration reaction is exothermic

Off-Board Regeneration of Chemical Hydrogen Storage Materials

Well-to-tank efficiency $(\eta_{WTT})^*$

 Ratio of LHV of H₂ produced to the primary energy (Q^f) consumed in producing (subscript p), delivering (subscript d) and storing (subscript s) H₂

$$\eta_{WTT} = \frac{\Delta H_{LHV}}{Q_p^f + Q_d^f + Q_s^f} \qquad Q_r^f = Q_d^f + Q_s^f$$

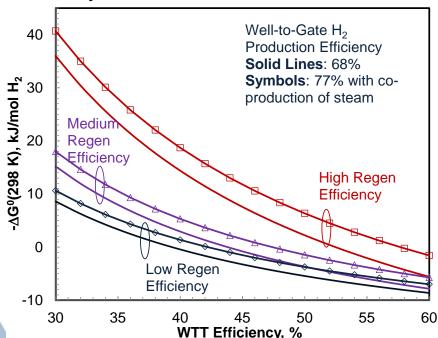
 Δ G determines the off-board regeneration efficiency. Materials with large negative Δ G require elaborate regeneration processes with high demands for primary energy.

WTT efficiency: 16-21% for NaBH₄ (-75 kJ/mol), 8-18% for AB (-45 kJ/mol), 24-31% for AlH₃ (-32 kJ/mol), 60-63.2% for n-ethyl carbazole

	ΔG^0	ΔH^0	ΔS^0	Regen	WTT	Comments
	(298 K)	(298 K)	(298 K)	Primary	Efficiency	
				Energy		
	kJ/mol-H ₂	kJ/mol-H ₂	J/mol.K	MJ/kg-H ₂	%	
NaBH₄	-74.75	-57.75	57	386	21.3	AnH-AqH
	Hydrolysis	Reaction		467	18.6	AqH-AqH
				500	17.7	An-Aq
				591	15.6	Aq-Aq
AlH ₃	-32	6.6	131	323	24.0	TMAA no waste heat
	Thermolys	is Reaction		210	31.0	50% waste heat
AB	-44.6	-33	39	485	18.1	Benzophenone
	Thermolys	is Reaction		1319	8.0	Bayer
				789	12.4	PCUK
CBN	-41.8	-18.97	77	596	15.5	MeOH/NaAIH₄
	Thermolys	is Reaction		217	30.5	Formic acid
LCH2	8.5	47.3-53.6	130.2	24	60.0	Trickle bed reactor
	Perhydro N	N-ethyl Carb	azole	14	63.2	Electricity production

WTT Efficiency Correlation

Analyzed a H₂ production, delivery and regeneration fuel cycle for NA NG and US electric grid: 68% SMR efficiency without credit for steam co-production, 77% with steam export.


WTT correlations for high, medium and low regeneration efficiencies

Materials with positive free energy of decomposition

• May meet the 60% WTT efficiency target if ∆G⁰(298 K) > 1.6 kJ/mol.

Materials with negative free energy of decomposition

- Even with steam export, 60% WTT efficiency not possible
- With steam export, minimum ∆G⁰(298 K) limited to -1.5 kJ/mol for 55% WTT efficiency and -6.4 kJ/mol for 50% WTT efficiency

Definitions of Free Energy and Enthalpy of Decomposition

$$AH_m = AH_n + (m-n)/2 H_2$$

$$\Delta G = (\frac{2}{m-n})[\Delta G_f(AH_n) - \Delta G_f(AH_m)]$$

NaBH₄ + 2 H₂O = NaBO₂ + 4 H₂

$$\Delta G = 1/4[\Delta G_f(NaBO_2) - \Delta G_f(NaBH_4) - 2\Delta G_f(H_2O)]$$

Bounding Thermodynamic and Kinetic Properties

Desired thermodynamic properties of materials for which the WTT efficiencies may be between 50 to 60%

- Over the narrow range of desired $\Delta G^0(298 \text{ K})$, exothermic materials are unsuitable if ΔS is between the expected range 80 130 J/mol.K
- Materials that decompose above the FCS coolant temperature and require a burner may not be acceptable since the on-board system efficiency is quite low for ΔH between 20 and 40 kJ/mol-H₂

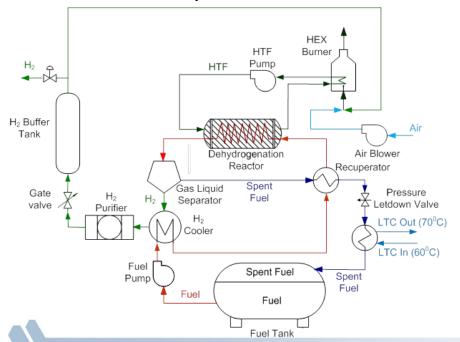
Desired kinetic properties of materials that decompose at 60 – 80°C

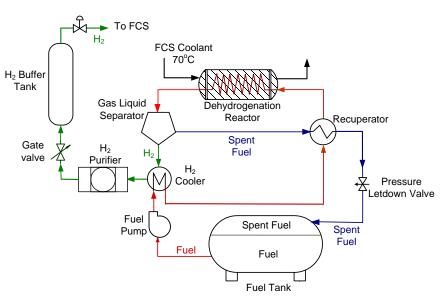
- Likely a catalytic process, otherwise the material would have short shelf life and may not meet the 0.05 g-H₂/h/kg stability target at room temperature
- Non-equilibrium decomposition kinetics that is independent of back pressure, otherwise the buffer tank would need to be refueled with gaseous H₂

		ΔS = 130 J/mol.K			ΔS = 105 J/mol.K			ΔS = 80 J/mol.K		
WTT Efficiency		60%	55%	50%	60%	55%	50%	60%	55%	50%
∆G ⁰ (298 K)	kJ/mol	1.6	-1.5	-6.4	1.6	-1.5	-6.4	1.6	-1.5	-6.4
ΔΗ	kJ/mol	40.3	37.2	32.3	32.9	29.8	24.9	25.4	22.3	17.4
P _{H2} (60°C)	atm	2.9	8.9	52.1	2.1	6.5	38.0	1.5	4.7	27.7
P _{H2} (70°C)	atm	4.4	13.2	73.3	3.0	8.9	49.4	2.0	6.0	33.3
P _{H2} (150°C)	atm	64.3	155.3	625.2	26.5	63.9	257.2	10.9	26.3	105.8

On-Board Chemical Hydrogen Storage System

Flow system to enable refueling of partially empty tanks

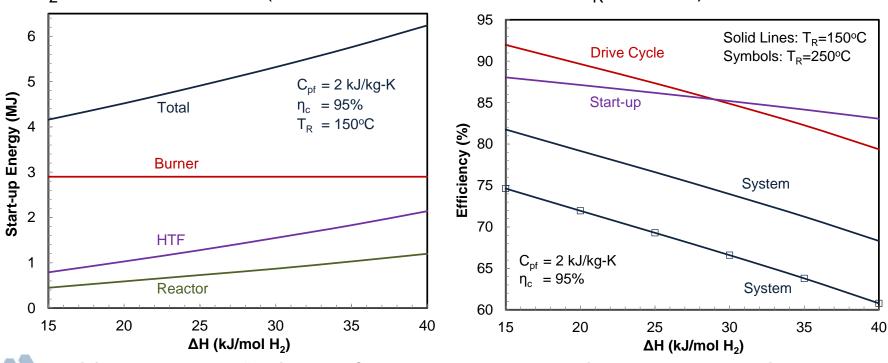

- Volume exchanged tanks for compactness
- Hydrogen buffer for start-up and fast transients
- Reactor operates at elevated pressure, reaction kinetics independent of back pressure, reactor size determined by reaction kinetics and heat transfer
- Fuel may be liquid, slurry or solution


System with burner*

- 50-kW microchannel HEX burner
- HTF coolant separates burner & reactor

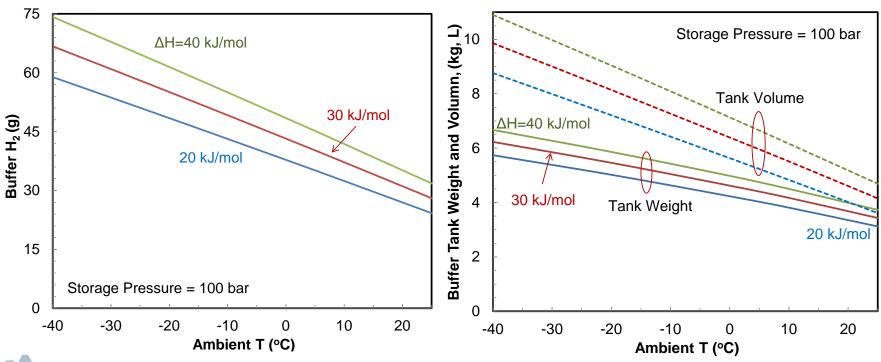
System without burner

- Thermally integrated with FCS
- Mitigates FCS heat rejection problem



Storage System with Burner: System Performance

Difficult to meet the 90% on-board system efficiency target if a burner is needed to supply the heat of decomposition ($T_R > T_{FC}$)


- Drive cycle efficiency (η_d): Ratio of H₂ supplied to the fuel cell to the H₂ released from the dehydrogenation reactor
- Start-up efficiency (η_{su}): Related to the fraction of H₂ consumed in a trip that is used in bringing the system components to their operating temperatures
- Burner efficiency (η_B): Burner heat transfer to the HTF as a fraction of the LHV of H₂ used in the burner (85% for 60% excess air and T_R = 150°C)

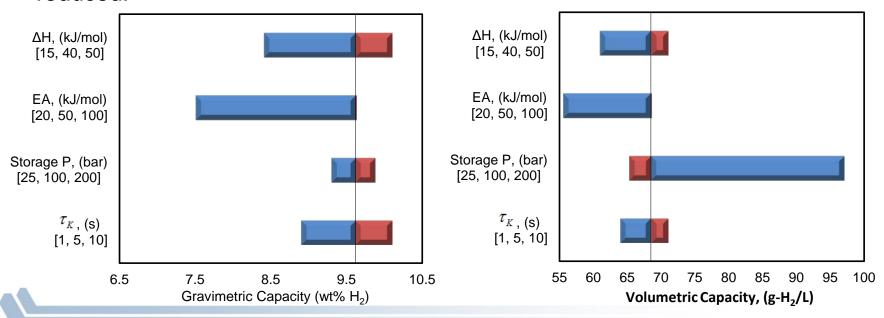
Storage System without Burner: Buffer H₂ Requirements

H₂ buffer capacity for FCS startup from -40°C*

- Buffer to supply H₂ until the fuel cell and the reactor reach the fuel decomposition temperature (70°C)
- Buffer replenished with excess H₂ released from fuel during normal operation when the stack coolant is at its peak temperature (80°C)
- Stack: 2 kW/kg specific weight, 0.5 kJ/kg.K average C_p
- Reactor: Thermal mass during startup includes weights of HX tubes, reactor walls, and coolant, 0.5 kJ/kg.K average C_p

RK Ahluwalia, JK Peng and TQ Hua, "Bounding Material Properties for Automotive Storage of Hydrogen in Metal Hydrides for Low-Temperature Fuel Cells," IJHE 39 (2014) 14874-14886.

Storage System without Burner: Baseline Material Targets


Thermodynamically mildly stable or unstable materials at room temperature that decompose at 70-80°C, 100 bar backpressure

		Units	Reference	Range of	Comments and Relevant
			Values	Values	Targets
	Free Energy of Decomposition	kJ/mol	1.6	-6.4 to 1.6	60% WTE efficiency
	Enthalpy of Decomposition	kJ/mol	40.0	20 to 40	90% on-board system efficiency
Chemical	Fuel Hydrogen Capacity	wt% H ₂	9.6	8.4 - 9.6	5.5 wt% system gravimetric capacity
Storage Material	Fuel Volumetric Capacity	g-H ₂ /L	68.5	61 - 71.5	40 g/L system volumetric capacity
	Decomposition Kinetcs	S	5	TBD	Time for 95% conversion at 70°C
	Fuel Stability	g/h/kg-H ₂	0.05		H ₂ loss target
Operating	Dehydrogenation Reactor	°C	70	TBD	
Temperatures	Heat Transfer Fluid (HTF)	°C	70	70 - 80	1.6 g/s minimum full flow of H ₂
	Spent Fuel Cooler	°C	50	25 - 50	
Operating	Storage Pressure	bar	100	50 - 200	
Pressures	Minimum Delivery Pressure	bar	5		DOE target
H ₂ Flow	Refueling Rate	kg/min	1.5		Not relevant for liquid fuels
Rates	Minimum Full Flow Rate	g/s	1.6		DOE target
Buffer H ₂	Storage Pressure	bar	100	50 - 200	Start-up from -40°C
Storage	Buffer Storage Capacity	g-H ₂	74	59 - 74	

Storage System without Burner: Sensitivity Analysis

On-going model testing and validation. As such, results are subject to uncertainties in shell-side heat transfer correlation

- ΔH: Determines reactor heat transfer area and fuel residence time.
 Reduces heat load on the FCS radiator (advantageous).
- Storage pressure: Determines the volume of the buffer.
 Volumetric material capacity target increases greatly if material decomposes at 25 bar back pressure.
- Activation energy (E_A): Fitting parameter.
- Isothermal conversion time (τ_K) : Actual decomposition rate may be controlled by mass transfer (not yet considered in model) and heat transfer as τ_K is reduced.

Additional Material Targets

- Fuel should remain liquid and be pumpable over the range of operating temperatures (-40°C to T_{FC}).
- No solid phases should form as the fuel is decomposed.
- No gaseous products of decomposition other than H₂.

	Parameter	Reference Value	Comments
Physical	Freezing Point	Below -40°C	
Properties	Boiling Point	Above 120°C	Vapor pressure should be <1 mPa at 95°C
	Viscosity	TBD	Fuel pumpable to 100 bar at -40°C
Stability	Shelf Life	TBD	
	Toxicity and	Non toxic	Compliant with applicable ES&H standrads
	Safety		
	H ₂ Purity		SAE J2719 and ISO/PDTS 14687-2 specifications
Material			Be compatible with materials rotinely used in
Compatibity			automtive fuel systems
Off-Board	WTT Efficiency	60%	Practcal industrial methods for regeneration
Regenerability	Cycle Life	TBD	
	Cost	TBD	As per DOE targets

Summary and Conclusions

Desired thermodynamic properties of materials for 50 - 60% WTT efficiencies (Based on the experience with NaBH₄, AlH₃, AB, CBN and n-ethyl carbazole)

- Minimum free energy of decomposition at 298 K: 1.6 kJ/mol for 60% WTT efficiency, and -6.4 kJ/mol for 50% WTT efficiency
- Exothermic materials are unsuitable if ΔS is between 80 130 J/mol.K
- Expected range of ΔH: 20 40 kJ/mol-H₂

Materials that decompose above the FCS coolant temperature and require a burner may not be acceptable since the on-board system efficiency is <70% for $\Delta H = 40 \text{ kJ/mol-H}_2$

Stringent requirement for usable gravimetric capacity if T_R > T_{FC}

Desired kinetic properties of materials

- Likely a catalytic decomposition process, otherwise the material would have short shelf life and may not meet the 0.05 g-H₂/h/kg stability target at room temperature
- Non-equilibrium decomposition kinetics that is independent of back pressure, otherwise the buffer tank would need to be refueled with gaseous H₂
- Preliminary target for decomposition kinetics: 5 s for 95% conversion at 70°C and 100 bar back pressure
- Initial targets for usable gravimetric and volumetric capacities of fuel:
 9.6 wt% H₂ and 68.5 g-H₂/L