BESTEST: Test Procedures "Building Energy Simulation" Tools

2014 Building Technologies Office Peer Review

Pre-normative work by Labs, IEA, ASHRAE etc. becomes...

Software Testing & Diagnostic Method: Finding needles in haystacks

Energy Efficiency & Renewable Energy

Normative ANSI/ASHRAE Standard 140

Ron.Judkoff@nrel.gov

Project Summary

<u>Timeline</u>:

Start date: Oct 2013*

Planned end date: Mar 2017*

Key Milestones FY14

1. Draft final report for Airside HVAC Tests

2. Draft updated BESTEST Thermal Fabric Tests

3. Addition of Ground Coupling tests to 140

Budget:

Total DOE \$ to date: \$580K

Cost Share to date: \$600k

Total future DOE \$: \$972K

Target Market/Audience:

- Software developers/vendors/practitioners
- Codes & Standards bodies (E.g., IRS 179D)
- University professors and students

*Validation themed projects started prior to 1981 and will need to continue as long as software continues to be developed.

Key Partners (Partial Listing)

	ASHRAE SSPC-140	Bentley Systems					
	RESNET	NRCan					
	TRANE	IES, UK					
	Carrier	TESS					
	AAON	GARD Analytics					
	Tsinghua U, China	De Montfort U, UK					
	U Strathclyde, Scotland	Tech U Dresden					
	TNO/VABI, Neth.	Sendai U, Japan					

Project Goals:

- -Develop methods for validating, diagnosing and improving building energy simulation tools and associated documentation.
- -Increase confidence in the tools by developing standard methods of test that can be cited by regulatory bodies for software certification.

Purpose and Objectives

Problem Statement: Improve accuracy of building energy simulation programs; test capabilities; and identify strengths, weaknesses, and gaps.

Target Audience: Software developers, vendors, users, and regulatory bodies. **Energy Savings:** New buildings market primary savings potential = 4.4 E+15 Btu/yr. by 2030*. Retrofit market = 12 E+15 Btu/yr. by 2030*.

Impact of Project:

- ANSI/ASHRAE Std-140 (based on BESTEST) is cited by many regulatory bodies needing to certify software in US and worldwide.
- Std-140 is 7th most purchased document out of 130 ASHRAE Standards and Guidelines.
- 96 Code citations in US.
- Referenced by: ASHRAE 90.1 Commercial Building Standard, IECC, IGCC, RESNET, ASHRAE Modeler Certification Exam, European Performance Directive, and energy codes of many nations world-wide.
- 18,000 BESTEST Reports downloads since 2011.
- IRS 179D Com Bldg Tax Credit cites 140 for approving software. Many other Federal, State and Local programs reference the IRS qualified software list.

IRS & RESNET Qualified Software BESTESTed with Standard 140

179D Commercial Building Tax Credits (13 Simulation Tools)

Hourly Analysis Program (HAP)

AUTODESK® GREEN BUILDING STUDIO

RESNET (HERS, IECC, Tax Credits)(6 Tools)

EnergyPro

Validation Methods Pros/Cons

Technique	<u>Pros</u>	Cons
EMPIRICAL (tests model & solution)	Approximate truth standard. Any level of complexity.	Input uncertainty. Experiment uncertainty. Expensive. Limited sample of param-space. Compensating errors?
ANALYTICAL (tests solution only)	No input uncertainty. Exact truth standard within constraints. Inexpensive.	No test of model. Limited to highly constrained cases.
COMPARATIVE (relative test of model & solution)	No input uncertainty. Any level of complexity. Inexpensive. Diagnostic Power.	No truth standard.

IEA BESTEST - TRNSYS DEBUG HIGH MASS ANNUAL HEATING

TRNSYS BEFORE DEBUG (Transposed transfer function coefficient)

BESTEST QUALIFICATION HIGH MASS ANNUAL HEATING

TRNSYS AFTER DEBUG

Transposed columns of transfer function coefficients (c to a)

VALIDATION METHOD: One of several useful flow paths

Approach

- Define test cases that provide a robust signal to noise ratio for the most important and fundamental simulation capabilities
- Construct and order the cases with diagnostic logic that progress one
 parameter at a time from simple to realistic (use analytical solutions as a
 starting point where possible)(use good* empirical validations where possible)
- Provide clear test specs (to minimize input errors) with equivalent inputs for many different types of building simulation programs (numerical, response, weighting factors, etc.)
- Refine test cases and example results by conducting iterative field trials with industry partners to test the simulation programs and to "test the test"
- Adhere to the principle of parsimony
 Key Issues: BESTEST approach vs defined
 algorithm approach (ASHRAE v. ISO, CA T-24)

Distinctive Characteristics:

- Does not constrain evolution of tools
- Diagnostic logic

Validation Test Matrix

			On-site
<u>Test Type</u>	Building Envelope	Mechanical Equipment	<u>Gen Eq.</u>
	•Ground Coupling (NREL)	•HVAC BESTEST vol 1 (NREL)	
Analytical	•Multizone Non-air (NREL)	•HVAC BESTEST Fuel-Fired	
	•Working Doc of IEA Task 22	Furnace (NRCan)	
	(Finland)	•ASHRAE RP 865 (Penn St/	
	•ASHRAE RP 1052 (OkSU)	TAMU/NREL) Airside HVAC	
	•Multizone Air (Japan)	,	
	•Fabric BESTEST (NREL)	•HVAC BESTEST vol 2 (NREL)	•Fuel Cell
Comparative	•Fabric BESTEST update	•RADTEST Radiant Htg (Switz.)	IEA Task
	•HERS BESTEST (NREL)	•E+ Plant Tests (GARD)	(NRCan)
	•Ground Coupling (NREL 7/14)	•Hydronic Systems (Germany)	
	•Multizone non-air (NREL)		
	•Multizone Airflow (Japan)	•RESNET/IECC Equipment Tests	
	•Double-Skin Facade (Denmark)		
	•ETNA BESTEST (NREL/EDF)	•Iowa ERS: VAV	
Empirical	•ETNA/GENEC Tests (EDF-Fr)	•Iowa ERS: Economizer Control	
<u> </u>	•BRE/DMU Tests (BRE-UK)	•Iowa ERS: Daylite/HVAC	
	•EMPA:Daylite/shade/cool (Sw)	•Iowa ERS: Daylite/HVAC2	
	•ERS – Daylighting (US/Iowa)	•Hydronic Systems (Germany)	
	•Double-Skin Façade (Denmark)		
Calibration	•BESTEST-EX (NREL)	•Hydronic Systems (Germany)	

Progress and Accomplishments

Lessons Learned:

- Good empirical validation studies are very difficult and expensive to do (but would be very valuable)(FLEXLAB may be of help)
- Iterative simulation trials are essential

Accomplishments Fy13 & 14:

- 3 iterations of air-side HVAC tests resulting in improved agreement of example results, and unambiguous test specs good for a variety of model types
- Fabric tests: Spec update in progress, identified key updates with industry
- Completion of ASHRAE galley proofs for Ground Coupling tests
- Technical support to ASHRAE for Continuous Maintenance of 140-2014

Awards/Recognition:

- New validation section in ASHRAE Handbook by Judkoff and Neymark
- Translated into Chinese, Dutch, German, Japanese, Portuguese, and others
- Fabric BESTEST selected by the IEA as one of the 10 most significant reports in the history of the IEA
- 96 Code Agency citations in U.S.

Projects in Progress – Airside HVAC Model Tests

- System air energy balance
- Based on ASHRAE RP 865
- Analytical verification tests
- 4 systems: FC, SZ, CV, VAV
- 7 steady state cases per system
- Simulation trials and spec revisions for standardization
- 3rd simulation trial completed

Simulation Trial Participants (7 models, 4 countries)

Model	Authoring Organization	Implemented By					
VECM (reference benchmark)	PSU/TAMU/NREL, U.S.	NREL, U.S.					
AAON – DEEAP	AAON Inc., U.S.	AAON Inc., U.S.					
DeST	Tsinghua U., China	Tsinghua U. (Ch.), LBNL (U.S.)					
DOE-2.2	J.J. Hirsch & Assoc., U.S.	NREL, U.S.					
EnergyPlus	U.S. DOE, U.S.	GARD Analytics, U.S.					
IES-VE	IES, U.K.	IES, U.K.					
LCEM	MLITT, Japan	TTE, Japan					
TRNSYS-17	TESS, U.S.	TESS, U.S.					

Airside HVAC Model Test Results – Early (Jun 2012)

Airside HVAC Model Test Results - Current (Jan 2014)

Airside HVAC Model Example Bug – Program D Bug (2)

Zone latent gains not picked up in Program D's FC system model; SZ system model was ok

Projects in Progress – IEA BESTEST Update

- First published 1995, basis of ANSI/ASHRAE Std 140
- Test building thermal fabric modeling (envelope +)
- Comparative tests, software to software
- 39 Cases: Basic and In-Depth
 - Sensitivity Features: Thermal mass, windows, shading, orientation, internal gains, sunspace, night ventilation, thermostat settings
- Update for advances in modeling tools state of the art:
 - Weather data (TMY 3)
 - Surface heat transfer coefficients
 - Weather driven infiltration
 - Windows
 - Other
- Simulation trials begin 2014
 - SSPC 140 and others worldwide
 - Spec update in progress

Next Steps and Future Plans

FY14 & Beyond (budgeted)

- Finish airside HVAC Tests Vol 1.
- Finish draft of updated Fabric BESTEST and start field trials
- Tech support for publication of Ground Coupling tests by ANSI/ASHRAE at Seattle meeting, July 2014 (galley reviews, etc.)
- Tech support for Std 140-2014 continuous maintenance revision
- BESTEST Multi-zone non-airflow mandatory language

Future Thoughts (not budgeted)

- Volume 2 of Airside HVAC (SSPC-140 interested in this)
- FLEXLAB or other Emp test facility (controlled, repeatable, side x side)
 - Energy hog physics, 1D vs 3D conduction, empirical BESTEST, etc.
- Multi-Zone Airflow (Sendai U, MITI, Japan)
- BESTEST-EX and Residential HVAC
- More realistic ground coupling tests (e.g., walk-out basements)
- WETTEST: Moisture physics
- Hydronic Equipment tests
- Plant tests
- See Standard 140 Annex B-23 for more

REFERENCE SLIDES

Project Budget

Project Budget: See Table

Variances: No variances to report.

Cost to Date: \$580k

Additional Funding: Cost Share noted in table

Budget History									
Oct 2012 FY2013 (past)		–	014 rent)	FY2015 – Mar 2017 (planned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$405k	\$150k	\$400k	\$450k	\$747k	\$500k				

Project Plan and Schedule

Project Start: Oct 2013*		Com	pleted	l Work	(
Projected End: Mar 2017*		Active Task (in progress work)										
*Validation themed projects started prior to 1981			◆ Milestone/Deliverable (Originally Planned) use for missed									
and will need to continue as long as software			Milestone/Deliverable (Actual) use when met on time									
continues to be developed	FY2013			FY2014				FY2015				
♦ Planned milestone/deliverable	-Dec)	(Jan-Mar)	-Jun)	Sep)	-Dec)	-Mar)	-Jun	Sep)	-Dec)	-Mar)	-Jun)	Sep)
Task	Q1 (Oct-Dec)	Q2 (Jan	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Q4 Milstn/Dlv: Updated draft test spec: Air-Side												
HVAC Equipment Test Cases (NREL-FY-13-16-03)												
Q4 Milestone/Dlv: Updated IEA BESTEST Building												
Thermal Fabric Test Cases (NREL-FY-13-16-04)												
Current/Future Work												
Q2 Milstn/Dlv: Letter Progress Rpt., status of												
Airside HVAC test results and convergence plans												
Q3 Milstn/Dlv: Letter Progress Rpt., status of								ζ				
thermal fabric test spec and convergence plans							`	<u> </u>				
Q4 Milstn/Dlv: Draft final report for Air-Side HVAC								_	,			
Equipment Test Cases								`	<u> </u>			
Q4 Go/No-Go: a) Progress to work sched? b)												
Participation by Std 140 members and industry								<	>			
partners including ≥ 3 different sim programs?												
FY15, Q4: Submit airside draft final report to 140												\Diamond
FY15, Q4: Draft fabric test update report												│ ◇