High Efficiency Low Emission Refrigeration System

2014 Building Technologies Office Peer Review

Energy Efficiency & Renewable Energy

Brian Fricke, frickeba@ornl.gov Oak Ridge National Laboratory

Project Summary

<u>Timeline</u>:

Start date: 1 October 2011

Planned end date: 30 September 2016

Key Milestones

 Evaluate System Design Strategies; March 2013

2. Develop Prototype System; March 2013

3. Fabricate Prototype System; March 2014

Key Partners:

Hill Phoenix (CRADA Partner)

Danfoss

Luvata

SWEP

Budget:

Total DOE \$ to date: \$700k

Total future DOE \$: \$1,000k

Project Goal:

The goal of this project is to develop a supermarket refrigeration system that reduces greenhouse gas emissions by 75% and has 25% lower energy consumption than existing systems.

Target Market/Audience:

The primary market segment targeted by this project is large national food retailers.

Purpose and Objectives

Problem Statement:

- Develop supermarket refrigeration system:
 - Reduce greenhouse gas emissions by 75%
 - Reduce energy consumption by 25%
- Fabricate prototype systems for:
 - Laboratory evaluation
 - Field evaluation

Target Market and Audience:

- 37,000 supermarkets in the U.S.
- Average supermarket consumes ~2 million kWh per year:
 - Refrigeration represents ~50% of energy use
- Large refrigerant charge per store
 - 2000 to 6000 lb
 - High refrigerant leak rates (up to 25% per year)

Emissions: 30 MMtCO_{2e}/yr

Energy: 32 TBtu/yr

Purpose and Objectives

Impact of Project:

- Goal:
 - Develop low emission, high efficiency supermarket refrigeration system:
 - 25% energy savings, 75% emissions reduction
 - Demonstrate system performance:
 - In controlled laboratory setting
 - In third-party installation
- Impact:
 - Encourage implementation of new refrigeration technology:
 - Low emission, high efficiency systems in use in Europe and Canada
 - Encourage market penetration in the US
- Impact Paths:
 - Near term: Disseminate system performance data
 - DOE reports, conference proceedings, journal articles, trade shows
 - Intermediate term: Product launch by CRADA partner
 - Deploy low emission, high efficiency systems in 2014
 - Long term: Determine number of systems installed by industry partner
 - Feedback from owners/operators
 - Proven in-field performance

Approach

Approach:

- Analyze refrigeration system strategies:
 - System types (multiplex DX, secondary loop, CO₂), advanced display case designs, lower Global Warming Potential (GWP) refrigerants
 - EnergyPlus evaluate energy consumption
 - Life Cycle Climate Performance (LCCP) modeling - evaluate emissions
- Select prototype refrigeration system:
 - Environmental impact, energy efficiency, cost-effectiveness, marketability, safety and reliability
 - Develop detailed design of prototype refrigeration system

Approach

Approach:

- Fabricate laboratory-scale prototype refrigeration system:
 - Characterize performance under controlled conditions
- Conduct field characterization of the prototype refrigeration system:
 - Develop guidelines for accurate field evaluations
 - Install full-scale refrigeration system in a third-party installation
 - Produce field characterization report:
 - Performance of the full scale refrigeration system operating under actual field conditions

Approach

Key Issues:

- Common multiplex direct expansion (DX) system:
 - Prone to refrigerant leaks:
 - Long piping lengths, high GWP refrigerants
 - High direct emissions
 - Significant energy consumption:
 - High indirect emissions
- Need system with reduced emissions and greater energy efficiency:
 - Lower direct and indirect emissions
 - Cost-effective, safe and reliable

Distinctive Characteristics:

- Refrigeration system developed with industry partner
- System performance characterizations to be performed:
 - In lab, under controlled conditions
 - In field, under actual conditions

Accomplishments:

- Analyzed energy consumption and environmental effects of various supermarket refrigeration systems
 - Multiplex DX, cascade/secondary,
 CO₂ transcritical, standard and high efficiency display cases
 - Added transcritical CO₂ booster system modeling to EnergyPlus
 - Evaluated energy consumption and LCCP of systems
 - Transcritical CO₂ system: 39% more efficient and 78% less emissions than baseline

Multiplex Direct Expansion (DX) System

Refrigerant: HFC

GWP: High (1600-4000)

Transcritical CO₂ Booster System

Refrigerant: CO₂

GWP: Low (1)

In use in Europe and Canada, but not in US

Accomplishments:

- Developed prototype system
 - CO₂ transcritical booster
 - Based on results of energy and environmental analysis
 - Prepared design documents
- Fabricated prototype refrigeration system
 - Compressor rack
 - Gas cooler/condenser
 - Display cases
 - Fully instrumented
 - Installing system in ORNL's environmental chambers

Market Impact:

- CRADA partner to deploy low emission high efficiency systems in 2014
- Conference presentations are raising interest in lower emission refrigeration systems, particularly CO₂ systems
 - Attendees are looking forward to seeing laboratory and field test results

Awards/Recognition:

Not yet

Project Integration and Collaboration

Project Integration:

- Developing refrigeration system in collaboration with industry partners: Hill Phoenix, Danfoss, Luvata, SWEP
 - Collaborate via conference calls, email, site visits, meetings at conferences
- Professional organizations (ASHRAE, IIR, AHRI)
 - Interact with equipment manufacturers and end users at conferences

Project Integration and Collaboration

Partners, Subcontractors, and Collaborators:

- ORNL
 - Expertise in HVAC&R equipment performance evaluation and modeling

- Hill Phoenix
 - Supplier of commercial refrigeration systems and refrigerated display cases

- Danfoss
 - Supplier of refrigeration systems, sensors and controls

- Luvata
 - Supplier of heat exchangers, condensers and gas coolers

- SWEP
 - Supplier of brazed plate heat exchangers

Project Integration and Collaboration

Communications:

PUBLICATIONS

- Fricke, Brian A., Pradeep Bansal, and Shitong Zha, "Energy Efficiency and Environmental Impact Analyses of Supermarket Refrigeration Systems," 2013 ASHRAE Summer Meeting, 22-26 June 2013, Denver, CO.
- Sharma, Vishaldeep, Brian A. Fricke, and Pradeep Bansal, "Thermodynamic Analysis of CO₂ Transcritical Supermarket Refrigeration Systems (NY-14-C012)," 2014 ASHRAE Winter Meeting, 18-22 January 2014, New York, NY.
- Sharma, Vishaldeep, Brian Fricke, and Pradeep Bansal, "Thermodynamic Analysis and Waste Heat Utilization of CO₂
 Supermarket Refrigeration Systems," 11th International Energy Agency Heat Pump Conference, 12-16 May 2014, Montreal, Canada.
- Sharma, Vishaldeep, Brian Fricke, and Pradeep Bansal,
 "Comparative Analysis of Various CO₂ Configurations in Supermarket Refrigeration Systems," *International Journal of Refrigeration* (submitted).

Next Steps and Future Plans

Next Steps and Future Plans:

- Evaluate performance of prototype refrigeration system in laboratory
- Evaluate performance of refrigeration system in third-party installation
- CRADA partner to begin deploying systems by end of 2014
- Develop 2nd generation prototype system
 - Parallel compression
 - Evaporative gas cooler/condenser
 - Waste heat utilization

REFERENCE SLIDES

Project Budget

Project Budget: DOE total \$1,700k FY12-16

Cost to Date: ~\$586k through February 2014

Additional Funding: None expected.

Budget History									
FY2012 — FY2013 (past)			014 rent)	FY2015 — FY2016 (planned)					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
\$300k	*	\$400k	*	\$1,000k	*				

^{*} In-kind contribution from CRADA partner – exceeds DOE funding level; exact total is confidential information

Project Plan and Schedule

Project Schedule												
Project Start: 1 October 2011		Completed Work										
Projected End: 30 September 2016		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for missed										ed
	•	Milestone/Deliverable (Actual) use when met on time										
		FY2013			FY2014			FY2015				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Q2 Milestone: Establish store/system criteria	♦											
Q2 Milestone: Select/develop system models												
Q2 Milestone: Evaluate system design options												
Q2 Milestone: Develop prototype design			•									
Q4 Milestone: Develop lab test plan					<u> </u>							
Current/Future Work												
Q2 Milestone: Fabricate/install prototype							<u> </u>					Ш
Q3 Milestone: Perform laboratory testing												Ш
Q3 Milestone: Develop field test plan												Ш
Q4 Milestone: Fabricate/install field system												
Q2 Milestone: Perform field testing												