

OpenBAS—Software-Defined Solutions for Managing Energy Use in Small to Medium-Sized Commercial Buildings

DOE Award DE-EE0006351

July 4, 2014

David Culler, Tyler Hoyt, EECS, UC Berkeley Mark Modera, Marco Pritoni, UC Davis Alan Meier, Francis Rubinstein, Anna Liao, LBNL Stephen Dawson-Haggerty, Building Robotics Therese Peffer, Karl Brown, Carl Blumstein, CIEE

The problem....

Buildings consume over 40% of the total energy consumption in the U.S.

Over 90% of the buildings are either small- (<5,000 sf) or medium-sized (between 5,000 sf and 50,000 sf).

Very few of these buildings use Building Automation Systems to monitor and control their building systems from a central location.

Thus a significant amount of energy is wasted.

Katipamula, P et al. 2012. Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping
 Study. Report Number: PNNL-22169. Pacific Northwest National Laboratory: Richland, WA.

†4 energy

A proposed solution....

Inspired by the Internet, OpenBAS is an open softwarearchitecture, open source Building Automation System for medium commercial buildings that uses a layered, horizontal approach to foster innovation among third party vendors.

> †4 energy

OpenBAS:

Software-Defined Solutions for Managing Energy Use in Medium-Sized Commercial Buildings

Objective:

- Develop an open source open architecture Building Automation System (BAS) for commercial buildings < 50,000 sf.
- Develop three open source plug 'n play devices (HVAC, lighting, general)
- Develop open source user interface with system set-up, status display and auto-mapping.

Team:

Building Operating System Services (BOSS)

David Culler, Michael Andersen, Gabe Fierro, Jonathan Fuerst, Tyler Hoyt, EECS, UC Berkeley Mark Modera, Marco Pritoni, UC Davis Alan Meier, Francis Rubinstein, LBNL Stephen Dawson-Haggerty, Building Robotics Therese Peffer, Karl Brown, Carl Blumstein, CIEE

A runtime for the building

- Hardware presentation layer
 - sMAP (simple Monitoring and Actuation Profile)
 - Integrate heterogeneous monitoring, actuation, & communication substrates
- Hardware abstraction layer
 - Map between physical and virtual resources
 - Write applications in terms of relationship between hardware elements
- Time series data service
 - Archiving and querying
- Application layer
 - Portable, robust

Hardware Presentation Layer: sMAP

(Development began in 2009, now has 40+ drivers, active users group)

sMAP

- Universal information representation for physical data
 - Self-describing, compact JSON schema, transportable over UDP/TCP
 - Integrated metadata
- Software Architecture for physical data processing and actuation
 - Real-time and archival data, time-series database
 - Adapters/Drivers for legacy and direct streams
 - Subscription, syndication, distillates
 - Query processing, visualization interface
- Resource-oriented web-service framework for embedded applications

http://code.google.com/p/smap-data

Hardware Abstraction Layer

```
proc = BossProcess(timeout=15min, auth_token=ABC)
while True:
for dmp in hal.find('#OUT_AIR_DMP > #AH'):
for vav in hal.find('#VAV < $%s' % dmp.name):
    occ = model.estimate_occupancy(vav)
    vav.set_min_airflow((vav.min_fresh_air() /
        dmp.get_percent_open()) * occ)
time.sleep(15*60)</pre>
```

Write applications in terms of relationship between hardware elements

Goals and Challenges

- Portability of Applications
 - Write once, run anywhere for buildings
 - Current practice: hand-coded logic
- Fault tolerance
 - Partial failures of controllers
 - Network partitions
 - Current practice: really tough hardware
- Multiple processes
 - Concurrent applications and users
 - Current practice: none
- Federation
 - Multiple heterogeneous systems
 - Current practice: lots of stovepipes
- Scale
- Security & privacy

Security: BOSS Wide Area Verified Exchange (BOSSwave)

- Web of trust model
- Decentralized
- Push to (multiple) subscribers not poll
- Revocation
- Verify
 - Origin, Authorization of Operation, Target
- Limit
 - Processing of unauthorized ops, bandwidth of fanout
- Tolerate
 - Intermittent connection

BOSS Software platform = backbone of OpenBAS

Proposed openBAS

Questions?

Therese Peffer

therese.peffer@uc-ciee.org

510-289-4278

©2014 i4Energy i4Energy.org