

Energy Storage R&D

2013 VEHICLE TECHNOLOGIES OFFICE

This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121

Fiscal Year 2013 Annual Progress Report for Energy Storage R&D

February 2014

Approved by David Howell, Hybrid Electric Systems Program Manager

Vehicle Technologies Office, Energy Efficiency and Renewable Energy

Table of Contents

I. INTRODUCTION	1
I.A Vehicle Technologies Office Overview	1
I.B Vehicle Technologies Battery R&D Overview	1
I.B.1 DOE Battery R&D Goals and Technical Targets	1
I.B.2 DOE Battery R&D Plans	2
I.B.3 Energy Storage R&D Programmatic Structure	3
I.B.4 Recent Highlights	5
I.B.5 Organization of this Report	6
II. The EV Everywhere Challenge	11
II.A Background	11
II.B EV Everywhere Technical Targets	11
II.C EV Everywhere FY2013 Highlights	12
II.D EV Everywhere Planned Activities	22
III. Advanced Battery Development	25
III.A USABC Battery Development Projects	29
III.A.1 EV Battery Development (Envia Systems)	29
III.A.2 EV Battery Technology Assessment Program (Farasis Energy, Inc.)	32
III.A.3 EV Battery Technology Assessment (SK Innovation)	35
III.A.4 Advanced High-Performance Batteries for Plug-In Hybrid Electric Vehicle Applications (JCI)	38
III.A.5 Development of a High-Performance PHEV Battery Pack (LG Chem)	45
III.A.6 Energy Storage System for High Power HEV Applications (Maxwell)	50
III.A.7 12 Volt Start/Stop Battery Development (Saft)	53
III.A.8 Development of an Advanced, Lithium Ion, 12V Start-Stop Battery (Leyden Energy, Inc)	56
III.A.9 Multifunctional, Inorganic-Filled Separator Development for Large Format Li-ion Batteries (ENTEK	.) .61
III.B Advanced Lithium Battery Cell Technology	63
III.B.1 Silicon-Nanowire Based Lithium Ion Batteries for Vehicles with Higher Energy Density (Amprius)	63
III.B.2 Development of Large Format Lithium-Ion Cells with Higher Energy Density (Dow Kokam)	66
III.B.3 Innovative Cell Materials and Designs for 300 Mile Range EVs (Nanosys)	69
III.B.4 High Energy Novel Cathode/Alloy Automotive Cell (3M)	75
III.B.5 Solid Polymer Batteries for Electric Drive Vehicles (SEEO)	80
III.B.6 Development of High-Energy Lithium Sulfur Cells (PSU)	82
III.B.7 Stand Alone Battery Thermal Management System (DENSO)	87
III.C Low-Cost Processing Research	89

III.C.1 Low-Cost Manufacturing Project (JCI)	89
III.C.2 Ultraviolet Curable Binder Lithium Ion Battery Project (Miltec UV)	93
III.C.3 High Capacity Alloy Anodes (Applied Materials)	95
III.D Advanced Materials and Processing (Funded by FY 2008 DOE FOA)	102
III.D.1 Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes (Sion Power)	102
III.D.2 New High-Energy Nanofiber Anode Materials (NCSU)	104
III.D.3 Internal Short Circuits in Lithium-Ion Cells for PHEVs (TIAX)	110
III.E Small Business Innovative Research Projects	114
IV. Battery Testing, Analysis, and Design	117
IV.A Cost Assessments and Requirements Analysis	118
IV.A.1 Core BatPac Development and Implementation (ANL)	118
IV.A.2 Battery Ownership Model: A Tool for Evaluating the Economics of Electrified Vehicles and I Infrastructure (NREL)	Related
IV.A.3 PEV Battery Second Use (NREL)	
IV.A.4 Battery Life Trade-Off Studies (NREL)	133
IV.A.5 PHEV Cost Effectiveness and Life-Cycle Analysis (ANL)	137
IV.A.6 Battery Production and Recycling Materials Issues (ANL)	145
IV.A.7 Updating USABC Battery Technology Targets for Battery Electric Vehicles (NREL)	151
IV.B Battery Testing Activities	154
IV.B.1 Battery Performance and Life Testing (ANL)	154
IV.B.2 Advanced Energy Storage Life and Health Prognostics (INL)	157
IV.B.3 Battery Performance and Life Testing (INL)	163
IV.B.4 Battery Abuse Testing (SNL)	168
IV.B.5 Battery Thermal Analysis and Characterization Activities (NREL)	174
IV.B.6 Development of an On-Demand Internal Short Circuit (NREL)	181
IV.C Computer Aided Engineering for Batteries	
IV.C.1 Computer Aided Engineering for Batteries (NREL)	188
IV.C.2 Computer Aided Engineering for Batteries (ORNL)	193
IV.C.3 Development of Computer Aided Design Tools for Automotive Batteries (GM)	199
IV.C.4 Development of Computer Aided Design Tools for Automotive Batteries (CD-adapco)	206
IV.C.5 Development of Computer Aided Design Tools for Automotive Batteries (EC Power)	210
IV.C.6 Battery Multiscale Multidomain Framework & Modeling (NREL)	213
IV.C.7 Lithium-Ion Abuse Model Development (NREL)	217
V. Applied Battery Research for Transportation	223
V.A Introduction	223
V.B Core Support Facilities	225

V.B.1 Process Development and Scale up of Advanced Cathode Materials (ANL)	225
V.B.2 Process Development and Scale up of Advanced Electrolyte Materials (ANL)	234
V.B.3 Cell Analysis, Modeling, and Prototyping (CAMP) Facility Production and Research Activities (AN	√L)237
V.B.4 Scale-up of BATT Program Materials for Cell Level Evaluation (LBNL)	262
V.B.5 Impact of Materials on Abuse Response (SNL)	267
V.B.6 Post-Test Diagnostic Activities (ANL)	271
V.C Critical Barrier Focus: Voltage Fade	275
V.C.1 Voltage Fade in the LMR-NMC Materials: Background & Project Scope (ANL)	275
V.C.2 Electrochemical Characterization of Voltage Fade in LMR-NMC Cells (ANL)	277
V.C.3 Voltage Fade in the LMR-NMC Materials: Mitigation via Doping and Substitution (ANL)	288
V.C.4 Structure-Activity Relationships for LMR-NMC Materials (ANL, ORNL)	298
V.C.5 Hysteresis in Li-ion Battery Active Cathode Materials (ANL)	311
V.C.6 Impact of Coatings on Voltage Fade in the LMR-NMC Materials (ANL, ORNL, NREL)	320
V.D Materials Optimization	328
V.D.1 High Voltage Electrolytes for Li-ion Batteries (ARL)	328
V.D.2 Development of Novel Electrolytes for Use in High Energy Li-ion Batteries with Wide Operating Temperature Range (JPL)	334
V.D.3 Novel Phosphazene-based Compounds to Enhance Safety and Stability of Cell Chemistries for H Voltage Applications (INL)	-ligh 342
V.D.4 Evaluate Impact of ALD Coating on Li/Mn-rich Cathodes (NREL)	349
V.D.5 Strategies to Enable the Use of High-Voltage Cathodes and Diagnostic Evaluation of ABR Progra Lithium Battery Chemistries (LBNL)	am 352
V.D.6 Life and Abuse Tolerance Diagnostic Studies for High Energy Density PHEV Batteries (BNL)	357
V.D.7 Overcharge Protection for PHEV Batteries (LBNL).	362
V.D.8 Development of Abuse-Resistant Electrolyte Components (SNL)	367
V.E Process Development	371
V.E.1 Manufacturability Study and Scale-Up (ORNL)	371
V.E.2 Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes (ORN	IL) 379
V.E.3 Development of Industrially Viable Electrode Coatings (NREL)	386
V.E.4 Roll-to-Roll Electrode Processing NDE and Materials Characterization for Advanced Lithium Secondary Batteries (ORNL)	390
VI. Focused Fundamental Research	401
VI.A Introduction	401
VI.B Cathode Development	404
VI.B.1 Novel Cathode Materials and Processing Methods (ANL)	404
VI.B.2 In situ Solvothermal Synthesis of Novel High Capacity Cathodes (BNL)	409

VI.B.3 Design of High Per	formance, High Energy Cathode Materials (LBNL)	414
VI.B.4 Design and Synthe	sis of Advanced High-Energy Cathode Materials (LBNL)	420
VI.B.5 Novel and Optimize	ed Phases for High Energy Density Batteries (LBNL)	425
VI.B.6 Studies on High En	ergy Density Lithium-ion Electrodes (ORNL)	429
VI.B.7 Lithium-bearing Mix	ed Polyanion (LBMP) Glasses as Cathode Materials (ORNL)	434
VI.B.8 Development of Hig	gh-Energy Cathode Materials (PNNL)	438
VI.B.9 Optimization of Ion	Transport in High-Energy Composite Cathodes (UCSD)	443
VI.B.10 Novel Cathode Ma	aterials for High-Energy Lithium Batteries (UTA)	448
VI.C Anode Development		453
VI.C.1 Novel Anode Mater	rials (ANL)	453
VI.C.2 Metal-Based High	Capacity Li-Ion Anodes (Binghamton U.)	457
VI.C.3 New Layered Nanc	plaminates for Use in Lithium Battery Anodes (Drexel U.)	461
VI.C.4 A Combined Exper Si Electrodes (GM	imental and Modeling Approach for the Design of High Current Effic	ciency 466
VI.C.5 Hierarchical Assem	ubly of Inorganic/Organic Hybrid Si Negative Electrodes (LBNL)	470
VI.C.6 Electro-Deposition	of Silicon and Other Metals for Li-Ion Battery Anodes (NETL)	475
VI.C.7 Atomic Layer Depo	sition for Stabilization of Amorphous Silicon Anodes (NREL)	478
VI.C.8 Synthesis and Cha (PSU)	racterization of Si/SiOx-Graphene Nanocomposite Anodes and Pol	ymer Binders 483
VI.C.9 Development of Sil	icon-based High Capacity Anodes (PNNL)	488
VI.C.10 Wiring up Silicon	Nanoparticles for High Performance Lithium Ion Battery Anodes (St	anford U.)494
VI.C.11 Synthesis and Ch (SwRI)	aracterization of Silicon Clathrates for Anode Applications in Lithiun	n-ion Batteries 498
VI.C.12 First Principles Mo (TAMU)	odeling of SEI Formation on Bare and Surface/Additive Modified Sil	icon Anode 503
VI.C.13 Analysis of Film F Vibrational Spect	ormation Chemistry on Silicon Anodes by Advanced In situ and Op roscopy (UCB)	<i>erando</i> 509
VI.C.14 Nanoscale Compo Systems (U. Pitts	osite Hetero-structures and Thermoplastic Resin Binders: Novel Li-i	ion Anode 513
VI.D Electrolyte Development		518
VI.D.1 Advanced Electroly	/tes and Electrolyte Additives (ANL)	518
VI.D.2 Sulfone Liquids and	d Sulfate/Triflate Solids for High Voltage Electrolytes (ASU)	522
VI.D.3 Bifunctional Electro	olytes for Lithium-ion Batteries (CWRU)	527
VI.D.4 Interfacial and Bulk	Properties and Stability (LBNL)	531
VI.D.5 Development of Ele	ectrolytes for Lithium-Ion Batteries (URI)	536
VI.E Cell Analysis, Modeling, ar	nd Fabrication	540
VI.E.1 Predicting Microstru	ucture and Performance for Optimal Cell Fabrication (BYU)	540

VI.E.2 Assembly of Battery Materials and Electrodes (HydroQuebec - IREQ)5	544
VI.E.3 Model-Experimental Studies on Next-generation Li-ion Battery Materials (LBNL)5	548
VI.E.4 Predicting and Understanding Novel Electrode Materials from First-Principles (LBNL)5	553
VI.E.5 Electrode Fabrication and Materials Benchmarking (LBNL)5	556
VI.E.6 Cell Failure: Electrochemical Diagnostics (LBNL)5	560
VI.E.7 First Principles Calculations of Existing and Novel Electrode Materials (MIT)5	564
VI.E.8 Design and Scalable Assembly of High Density Low Tortuosity Electrodes (MIT)5	567
VI.F Diagnostics5	571
VI.F.1 Energy Storage Materials Research using DOE's User Facilities (ANL)5	571
VI.F.2 Advanced in situ Diagnostic Techniques for Battery Materials (BNL)5	576
VI.F.3 Interfacial Processes (LBNL)5	582
VI.F.4 In situ Electron Microscopy of Electrical Energy Storage Materials (ORNL)5	587
VI.F.5 Microscopy Investigation on the Fading Mechanism of Electrode Materials (PNNL)5	590
VI.F.6 NMR and Pulse Field Gradient Studies of SEI and Electrode Structure (Cambridge U.)5	595
VI.F.7 Chemical and Structural Gradients in Composite Electrodes (LBNL)5	598
VI.G Beyond Lithium-Ion Battery Technologies6	602
VI.G.1 Novel Chemistry: Lithium Selenium and Selenium Sulfur Couple (ANL)6	602
VI.G.2 Development of Novel Electrolyte for Lithium Air (ANL)6	607
VI.G.3 Integrated Lab-Industry Research Project. (LBNL, ANL)6	614
VI.G.4 Integrated Lab-Industry Research Project (LBNL, ANL, FMC, Saft)6	619
VI.G.5 Developing Materials for Lithium-Sulfur Batteries (ORNL)6	626
VI.G.6 Composite Electrolyte to Stabilize Metallic Lithium Anodes (ORNL)6	630
VI.G.7 Lithium Dendrite Prevention for Lithium-Ion Batteries (PNNL)6	634
VI.G.8 Development of High Energy Lithium Sulfur Batteries (PNNL)6	639
VI.G.9 Rechargeable Lithium-Air Batteries (PNNL)6	644
VI.G.10 Simulations and X-ray Spectroscopy of Li-S Chemistry (UCB)6	649
VI.G.11 Lithium Batteries of Higher Capacity and Voltage (UT Austin)6	654
Appendix A: List of Contributors and Collaborators	357

LIST OF FIGURES

Figure II - 1: Modeled cost and energy density of PHEV batteries developed and tested	. 12
Figure II - 2: Estimated useable specific energy, energy density, and cost for a 100 kWh _{use} , 80kW _{net} 360V battery produced at 100k/year	. 13
Figure II - 3: Progression of achieved cell-level energy density increases	. 14
Figure II - 4: 18650 data demonstrating a 50% energy improvement for the C/S Si composite over the NMC Graphite design.	. 15
Figure II - 5: Voltage profile of the Argonne scale-up JPL carbonate material	. 17

Figure II - 6: Cycle life data of NMC111/LMO blend and NMC424/LMO blend at room temperature (RT), appropriate for long- range PHEV and EV applications	18
Figure II - 7: Experimental demonstration of TIAX's real-time internal short detection technology in a battery pack under an automotive duty cycle	19
Figure II - 8: Cycle life of the 2.0Ah NCM pouch cell with NFi™ electrolyte	20
Figure II - 9: Heat release measured by using cone calorimetry in 2.0Ah NCM cells	20
Figure III - 1: DST cycle life test results in terms of energy (a) and discharge power (b) for 20Ah capacity pouch cells	30
Figure III - 2: Commercial 25 Ah Li-ion pouch cell	33
Figure III - 3: Rate capability of 25 Ah Li-ion pouch cell	33
Figure III - 4: 2.0 Ah Li-ion pouch cell cycling data: C/5 charge, C/3 discharge	33
Figure III - 5: 30 Ah Li-ion pouch cell cycling data: C/3 charge, C/3 discharge	34
Figure III - 6: Constant current discharge test for LMO-free E400	36
Figure III - 7: C/3 capacity retention of LMO-free E400 in cycle life	36
Figure III - 8: C/3 capacity retention of LMO-free E400 in calendar life	36
Figure III - 9: Energy density roadmap	39
Figure III - 10: Baseline prismatic cell calendar life	41
Figure III - 11: Mid-program cell calendar life at 60°C	41
Figure III - 12: High solids mixing approaches using dry compounding (left) and paste mix (right) methods	42
Figure III - 13: Paste mixing equipment and electrodes.	42
Figure III - 14: PHEV cycle life: 95%-25% vs 95%-15%SOC	43
Figure III - 15: Cell sealed by torsional ultrasonic welding	43
Figure III - 16: Ceramic separators calendar life at 60°C	44
Figure III - 17: Effect of charge voltage and surface coatings on cycle-life. Top: Data showing the beneficial effect of ALD surface coating on the cycle-life at 45°C. The cell was charged at 0.5C and discharged at 1C. Bottom: When the charge voltage was raised to 4.5V, instead of 4.4V as in Top figure, there is a substantial decline in cycle-life	ace ; 47
Figure III - 18: Top) Effect of formation voltage on the amount of transition metal deposited on carbon anode. Sample 1 was formed at 4.6V. Sample 2 was formed at 4.4V. Note the significantly large quantity of Mn deposited at 4.6V. Bottom) Effect of surface coating on Mn dissolution. ALD coating reduces Mn dissolution both during formation a well as cycling.	as 47
Figure III - 19: Top: Schematic of the PHEV-40 mile pack we have developed. The thermal chamber containing elements such the compressor, the cold-plate and the evaporator is on the right while the electrical chamber is on the left; Botto picture of the finished pack as delivered to the National Labs.	h as om: 48
Figure III - 20: Examples of the thermal performance of the pack using the cooling system we have developed. Top figure sho the average temperature of the modules during US06 cycling at 40°C. The data show that the modules are with 4°C of each other, indicating uniform and efficient cooling. Bottom figure compares three different packs using different compressor ratings (single 12V, dual 12V and a 24V. The associated cold-plate temperatures are also shown in the graph. The cold plate temperature is the bottom curve.	ows iin 49
Figure III - 21: 3.8 Wh third generation HPPC BOL pulse power capability	51
Figure III - 22:- Maxwell LEESS module	51
Figure III - 23: Cold crank results of 1st deliverable cells	55
Figure III - 24: Impedance growth results	55
Figure III - 25: Improvements in 100% SOC -30°C cold-cranking performance over the course of the program; recalculated to pack level	57
Figure III - 26: Cold-cranking performance of 2.2Ah LTO-LMO prototype cells at various SOC; recalculated to pack level	57
Figure III - 27: Rate performance of 2.2Ah prototype cells	57
Figure III - 28: Thermal performance test on 2.2Ah prototype cells	58

Figure III - 29: USABC L-HPPC test on 2.2Ah prototype cells	58
Figure III - 30: USABC shallow cycling at 30°C on 2.2Ah cells	58
Figure III - 31: USABC shallow cycling at 50°C on 2.2Ah cells	58
Figure III - 32: Comparison of most promising surface treatments in 0.8Ah prototype cells in 60°C unconstrained cycling; 1C/ 1.5-2.7V.	1C 58
Figure III - 33: 2.2Ah and 20Ah cell prototype	59
Figure III - 34: Leyden pack balancing circuitry	59
Figure III - 35: Cell module assembly drawing	59
Figure III - 36: 12V 40Ah LTO-LMO pack drawing	60
Figure III - 37: 18650 cells with silica-filled separators	62
Figure III - 38: Standard capacity fade 60°C storage test	62
Figure III - 39: Silicon swelling causes capacity fade and mechanical failure. Amprius' nanowires address swelling by allowing silicon to swell successfully) 64
Figure III - 40: Amprius improved the cycle life of laboratory cells matching silicon anodes and NCA cathodes	64
Figure III - 41: Amprius identified additives that extended the cycle life of early-stage, silicon-based lab cells	65
Figure III - 42: Amprius delivered to the DOE 18 baseline cells matching graphite anodes and NCM cathodes	65
Figure III - 43: Cycle performance of an HVC/Si-based anode cell	67
Figure III - 44: Energy density of an HVC/graphite sample cell	67
Figure III - 45: Thermal behavior of a high voltage NMC material when charged to various voltages	68
Figure III - 46: Baseline SiNANOde/LCO full cell	70
Figure III - 47: Voltage hysteresis of SiNANOde and Si powder-graphite full cells	70
Figure III - 48: SiNANOde half cell with 700~1000mAh/g	71
Figure III - 49: >1600mAh/g SiNANOde's voltage profile	71
Figure III - 50: Uniform Si nanowire distribution on graphite powders for 700mAh/g (Left) and >1600mAh/g (Right)	71
Figure III - 51: Voltage profiles and rate capabilities of cathode candidates	71
Figure III - 52: Cathode cyclability vs. different electrolyte	72
Figure III - 53: Cycle life at 0.3C rate (80% DOD)	72
Figure III - 54: ~1300 mAh/g SiNANOde cyclability	72
Figure III - 55: Cycle life of 250 Wh/kg pouch cell using 550 mAh/g SiNANOde at 0.5C rate (DOD 100)	73
Figure III - 56: Thickness change of High Energy Density Pouch Cells: SiNANOde/LCO	73
Figure III - 57: SiNANOde full cell cyclability	73
Figure III - 58: New electrolyte enables better cycling performance	74
Figure III - 59: Si Nanowire grown on larger graphite powders (Left) and smaller graphite powders (Right) for 700mAh/g	74
Figure III - 60: Calendered SiNANOde Anode (Left) and Graphite Anode (Right) with 1.5g/cm ³	74
Figure III - 61: Material Validation in coin cells vs. Li	76
Figure III - 62: Stable voltage curve than pure O ₂ loss cathode	77
Figure III - 63: Si composite electrode expansion vs. particle size	77
Figure III - 64: Calorimetry to characterize electrical network failure mechanisms	77
Figure III - 65: 18650 cell data comparing electrolyte A to B	78
Figure III - 66: Matching 1st cycle efficiencies maximizes benefit of both materials	78
Figure III - 67: Energy increase and cycle life of C/S Si design	78
Figure III - 68: 100 g of PSU-3 sulfur cathode material, synthesized via a new large-scale reactor approach	83
Figure III - 69: Cycling of cells with PSU-3 cathodes and a) PSU-E-5 electrolyte or b) ANL-E-4 fluorinated ether electrolyte wit 0.2M LiBr	ίh 84

Figure III - 70: Cycling performance, efficiency, sulfur-specific capacity, and energy density of 1.5 Ah design capacity pouch cells with a), b) Li foil and c), d) LiP anodes, using PSU-3 cathodes and 1M LiTFSI and 0.4M LiNO3 in DOL/DME (1:1, v/v) electrolyte	5
Figure III - 71: Battery model using AMEsim	3
Figure III - 72: 3Ah / 15Ah baseline cell)
Figure III - 73: Baseline cell HPPC test: red: 15Ah baseline cell, blue: 3Ah baseline cell)
Figure III - 74: Baseline cell full cycle life test: red: 15Ah baseline cell, blue: 3Ah baseline cell	J
Figure III - 75: Non-NMP electrodes evaluation: black: baseline, red: dry cathode electrode and baseline anode, blue: baseline cathode and dry anode electrode, green: dry cathode and dry anode, purple: aqueous cathode and baseline anode	; 1
Figure III - 76: HPPC test result: blue: baseline, red: build 1 set 1 dry electrode, green: build 1 set 2 dry electrode, black: build 1 set 3 dry electrode	1
Figure III - 77: Rate capability of separator technologies	1
Figure III - 78: Single layer pouch cell rate capability, solid line: dry electrodes with baseline separator, dotted line: dry electrodes with A technology	; 2
Figure III - 79: Reference cell	4
Figure III - 80: Initial charge and discharge	4
Figure III - 81: 50 cycle performance	4
Figure III - 82: Full cell 1000+ cycle 1C and 1/3C data demonstrate UV cathode binder is durable and electrochemically stable 94	4
Figure III - 83: Half cell 1/3C data for anode with UV cured binder	4
Figure III - 84: Schematic diagram of process flows for manufacturing baseline cells, interim cells and final cells with 3D current collector and alloy anodes	3
Figure III - 85: Single layer pouch cells (SLP) made with 3D structure electrode. Eighteen cells have been shipped to INL for testing	6
Figure III - 86: Cycling test results for baseline cell: 3DCu/Graphite vs. NMC. Projection for capacity retention over 80% is >1400 cycles	6
Figure III - 87: a) TEM and b) high resolution SEM images of the 3DCuSnFe Material	ŝ
Figure III - 88: Half-cell capacity and CE vs. cycle number; for 3-3.5 mAh/cm ² cells; baseline with 3DCu/graphite and interim I, interim II including the 3DCuSnFe/graphite material with 30% thickness reduction	7
Figure III - 89: Cycling test results for interim cell: 3DCuSnFe/Graphite vs. NMC. Measured capacity retention over 80% is ~1000 cycles) 7
Figure III - 90: Comparative analysis of CE and capacity retention of cycling test results for baseline and interim cells: SLP-5 3DCu/Graphite vs. NMC and SLP-8 3DCuSnFe/Graphite vs. NMC	8
Figure III - 91: Anode electrode stack and cathode electrode stack)
Figure III - 92: Discharge capacity vs cycle for Li-S cells with two polymer layers on the vacuum deposited lithium anode 103	3
Figure III - 93: Cell thermal ramp test at 5°C/min. Fully charged cell after 10 cycles	3
Figure III - 94: Schematic of composite nanofiber anode	4
Figure III - 95: Nyquist plots of Si/C and Si/CNT/C composite nanofiber anodes	ō
Figure III - 96: Equivalent circuit of Si/C and Si/CNT/C composite nanofiber anodes	5
Figure III - 97: Galvanostatic charge-discharge curves of Si/C nanofiber anodes under different current densities: (a) 50 mA g ⁻¹ , and (b) 300 mA g ⁻¹	5
Figure III - 98: Galvanostatic charge-discharge curves of Si/CNT/C composite nanofiber anodes under different current densities (a) 50 mA g ⁻¹ , and (b) 300 mA g ⁻¹	: 5
Figure III - 99: Cycling performance comparison of Si/C and Si/CNT/C composite nanofiber anodes under different current densities	3
Figure III - 100: Rate capabilities of Si/C and Si/CNT/C composite nanofiber anodes	3

Figure III - 101: Nyquist plots of Si/C and Al ₂ O ₃ -coated Si/C nanofiber anodes (ALD cycle number = 28) 107
Figure III - 102: Galvanostatic charge-discharge curves of Si/C composite nanofiber anodes and Al ₂ O ₃ -coated Si/C composite nanofiber anodes
Figure III - 103: Cycling performance of Si/C composite nanofiber anodes and Al ₂ O ₃ -coated Si/C composite nanofiber anodes 107
Figure III - 104: Columbic efficiencies of Si/C composite nanofiber anodes and Al ₂ O ₃ -coated Si/C composite nanofiber anodes
Figure III - 105: Schematic of (A) Physical/Mechanical, (B) Chemical protective effect of the ALD Al ₂ O ₃ coating
Figure III - 106: Schematic of experimental set-up to simulate internal short heat release in a cylindrical cell by using a miniature heater inserted in cell core. The heater power and external rate of heat transfer can be independently controlled111
Figure III - 107: Cell thermal properties, including specific heat and thermal conductivity were estimated/verified through heater experiments. Figure shows measured internal and cell surface temperatures for different heater power levels. Model fits are also shown. The cell was completely discharged prior to the experiment
Figure III - 108: Kinetic models for heat generation were developed by fitting experimental DSC data for the materials used in our cells. Top plot shows fit to charged anode (graphite) data and bottom plot the fit to the charged cathode (NCA) data. The scan rate for the DSC measurement was 5°C/min
Figure III - 109: Experimental thermal runaway data from the heater experiment. The heater power was ~10 W and the external heat transfer coefficient was ~15 W/m ² -K (low-level air flow past the cell)
Figure III - 110: Experimental thermal runaway data from the heater experiment. The heater power was ~10 W and the external heat transfer coefficient was ~15 W/m ² -K
Figure III - 111: Experimental data demonstrating the benefit of increased heat transfer coefficient (h) in suppressing thermal runaway. When h was maintained at ~12 W/m ² -K, thermal runaway occurred at ~700 s (cell surface temperature ~150°C). Temperatures higher than 150°C are not reported because the thermocouple was dislodged when the cell experienced thermal runaway, but we visually observed flames and a red-hot cell surface. In a subsequent experiment, h was increased from ~12 W/m ² -K to ~50 W/m ² -K when the surface temperature exceeded 130°C, resulting in cell cool down and suppression of thermal runaway. Identical cells were used in the two experiments 113
Figure IV - 1: Breakdown of the more than 1075 independent downloads of BatPaC during FY2012-2013
Figure IV - 2: Effects of target voltage efficiency (% OCV) at rated power on total cost to OEM for PHEV10 batteries with LMO-G electrodes and energy requirement of 200 Wh/mile
Figure IV - 3: Effects of target voltage efficiency (% OCV) at rated power on total cost to OEM for PHEV10 batteries with LMO-G electrodes and energy requirement of 200 Wh/mile. The secondary axis shows estimated maximum cell center temperature while driving the US06 drive cycle or continuous discharge at 65 mph
Figure IV - 4: Potential learning curve considering yield improvements in the cell formation cycling step and increased benefits of scale from going to larger production volumes
Figure IV - 5: Price to OEMs for battery packs of different types produced in dedicated plants (shown as lines) and in a combined plant with a total production of 235,000 batteries (shown as dots)
Figure IV - 6: Fraction of driver patterns where a fast charge service plan EV is more cost effective than direct ownership of an EV without fast charger access
Figure IV - 7: Representative drive cycle produced from 2,154 vehicles using DRIVE
Figure IV - 8: Effect of ubiquitous public charging on achievable VMT and tours not taken
Figure IV - 9: Projected amount of functional second-use battery energy storage available. High, mean, and low scenarios correspond to different PEV deployment rates
Figure IV - 10: Preliminary analysis results show multiple applications that could profitably employ second-use batteries
Figure IV - 11: Projected second-use battery repurposing cost for a repurposed battery selling price of \$132/kWh
Figure IV - 12: Projected repurposed battery selling price, competitive pricing scenario
Figure IV - 13: Repurposing cost and repurposed battery selling price for the low cost scenario
Figure IV - 14: Aging test conditions with apparent sudden acceleration in fade rate nearing end-of-life. Labels indicate the data source, percent depth-of-discharge, discharge & charge C-rate, and temperature

Eigure IV. 15: Comparison of experimental data (symbole) with life model predictions (solid block lines) and 05% confidence	
intervals (dashed purple lines)	, 135
Figure IV - 16: Integrated models for battery pack-level life prediction	. 136
Figure IV - 17: Contributions to increment in PEV price over CV: battery vs. other powertrain changes	. 138
Figure IV - 18: TCO for one assessed market niche, considering intercity driving at 8.5% and 19% of annual miles. IS = input split, OS = output split. B = blended charge depletion. AEV = all electric vehicle. Range predictions are miles	t 140
Figure IV - 19: ANL and DLR Estimates of beginning of life battery pack cost per kWh, by peak pack kW and chemistry	140
Figure IV - 20: Percent improvement of PHEV ownership cost (TCO) vs. conventional vehicle, by drivetrain and distance (rar predictions are km). Vehicle labeled PHEV70 is a series ER-EV; PHEV30 is an input split PHEV	nge 141
Figure IV - 21: Estimates of charge depleting km achieved per kWh of battery pack on three U.S. "on-road" driving cycles, for powertrain simulations	r 7 142
Figure IV - 22: Natural gas to vehicle distance pathways – annual energy use and GHG emissions	143
Figure IV - 23: Cradle-to-gate energy consumption for batteries with different cathode materials (NMC= LiNi ₄ Co _{.2} Mn ₄ O ₂ , LM	R-
NMC=.5Li2MnO35LiNi.44Co.25Mn.31O2, LCO=LiCoO2, LFP=LiFePO4, HT=hydrothermal preparation, SS=solid s	tate) 147
Figure IV - 24: The battery material life cycle can be closed to reduce impacts	147
Figure IV - 25: Energy required to produce cathode material	. 148
Figure IV - 26: Energy required to produce battery	. 148
Figure IV - 27: Batteries contribute a significant fraction of life-cycle sulfur emissions	. 149
Figure IV - 28: Cathodes made from recycled materials minimize sulfur emissions	. 149
Figure IV - 29: Required end-of-life (EOL) pack specific energy and energy density as a function of vehicle range, platform, a mass factor.	ind 152
Figure IV - 30: Discharge (top) and charge (bottom) power requirements for a mid-size sedan with a vehicle mass factor of 1	.2. 153
Figure IV - 31: Specific power vs. cycle count for cells cycled using the Chinese test protocol at ANL and INL	155
Figure IV - 32: Change in average, relative capacity measured using the two test protocols at the three test sites	156
Figure IV - 33: Impedance spectra as a function of DOD for a representative Sanyo SA cell at RPT0 and RPT8	161
Figure IV - 34: Average real impedance as a function of the discharge pulse resistance for the Sanyo SA cells	161
Figure IV - 35: Cycle-life profile for the 12V Start/Stop application	165
Figure IV - 36: HPPC profile for the 12V Start/Stop application	166
Figure IV - 37: HPPC scaled power vs. energy for the 12V Start/Stop application	166
Figure IV - 38: HPPC scaled useable energy curve for the 12V Start/Stop application	167
Figure IV - 39: (top) Force/displacement curve for the blunt rod test of a COTS cell and (bottom) a still photograph of that tes showing the orientation fo the blunt rod into the face of the cell	st 170
Figure IV - 40: Failure propagation in 1S10P (top) and 10S1P (bottom) 18650 cell batteries	171
Figure IV - 41: NREL model showing temperature contour of 1S5P pouch cell battery during propagation of thermal runaway	. 171
Figure IV - 42: ARC profiles for a fresh cells at 100% and 80% SOC and a calendar aged cell to 20% fade (80% power reten	ition) 172
Figure IV - 43: Cell heating rates during a thermal ramp abuse test for a fresh cell at 100% SOC and a calendar aged cell to power fade	20% 172
Figure IV - 44: NETZSCH IBC-284	175
Figure IV - 45: Efficiency of cells tested at 30°C in NREL's calorimeter during FY12/FY13	176
Figure IV - 46: Efficiency of two generations of cells tested at 30°C from 100% to 0% SOC	176
Figure IV - 47: Efficiency of two generations of cells tested at 30°C from 70% to 30% SOC	177
Figure IV - 48: Efficiency of two generations of cells tested at 30°C from 70% to 30% SOC	177

Figure IV - 49: Thermal image of a cell from manufacturer A under constant current discharge from 100% to 0% SOC	. 178
Figure IV - 50: Thermal image of a cell from manufacturer B under constant current discharge from 100% to 0% SOC	. 179
Figure IV - 51: Average cell temperature in a pack with and without cooling; the pack underwent a US06 CD cycle followed b US06 CS cycle.	iy a 180
Figure IV - 52: ISC schematic (not to scale)	182
Figure IV - 53: Cathode-to-anode ISC (top) and collector-to-collector ISC (bottom) (not to scale)	183
Figure IV - 54: ISC placed in DK 8 Ah cell; note the actual diameter of the short (Cu puck) is 0.125	183
Figure IV - 55: Voltage response to various ISC activations in DK 8 Ah pouch cell at 10% SOC	183
Figure IV - 56: Melted aluminum tab in DK 8 Ah cell upon activation of collector-to-collector ISC	184
Figure IV - 57: Temperature response to Type 4 ISC (aluminum-to-copper) implantation in E-One Moli 18650 cells	185
Figure IV - 58: Temperature response to Type 2 ISC (aluminum-to-anode) implantation in E-One Moli 18650 cells	186
Figure IV - 59: Four Elements of the Computer-Aided Engineering for Batteries (CAEBAT) Activity	190
Figure IV - 60: Validation of electrochemical-thermal STAR-CCM+ model with 12-cell lithium-ion module	191
Figure IV - 61: Current distribution measurement in large-format cell	191
Figure IV - 62: Simulated temperature distribution for the 24-cell module	192
Figure IV - 63: Schematic of the OAS modeling framework and interactions with other tasks within the CAEBAT program and external activities.	ł 194
Figure IV - 64: Coupling scenarios in battery modeling. We started with one-way and two-way loose coupling. In later years,	as
needed, we will move towards two-way tight coupling with Picard and Full-implicit methodologies	. 195
Figure IV - 65: Validation of 4.3 Ah pouch cell modeling (solid lines) with experimental temperature measurements (markers)	196
Figure IV - 66: Temperature distribution in a module with assymetric cooling	196
Figure IV - 67: Mechanical abuse of cylindrical cell (electrochemical-electrical-thermal-mechanical components)	196
Figure IV - 68: Tab placement study using DAKOTA	197
Figure IV - 69: CAEBAT-NiCE workflow environment for simulation setup, job launch and data post-processing	. 197
Figure IV - 70: Input file for thermal component (AMPERES) translated to BatML	. 198
Figure IV - 71: Project goals for the CAEBAT battery design tool development	. 199
Figure IV - 72: Proposed software architecture for the combined the cell-level, pack-level, and OAS-interface capability	. 201
Figure IV - 73: Comparison of cell level models with the test data at various C-rates and operating temperatures	. 201
Figure IV - 74: Simulation results based on MSMD approach	202
Figure IV - 75: Flowchart for the solution procedure using coordinate transformation	202
Figure IV - 76: ABDT Cell Level Design in Workbench	202
Figure IV - 77: Tabbed panel for the P2D sub model	. 202
Figure IV - 78: Set cell geometry based on parameterized templates	202
Figure IV - 79: A 24 cell module validation test set up for full field simulation against test data for high-frequency pulse charge discharge.	e- 203
Figure IV - 80: A 24 cell module CFD full field simulation	. 203
Figure IV - 81: Simulated temperature distribution for 24 cell module	. 203
Figure IV - 82: Comparison of temperatures between the full field simulation and the test data	. 203
Figure IV - 83: LTI ROM System-Modeling approach for Battery Thermal Modeling	204
Figure IV - 84: Cell module validation test set up for LTI ROM validation against test data for US06 drive-cycle	. 204
Figure IV - 85: Comparison of SOC between the model and the test data during US06 Drive-Cycle	. 204
Figure IV - 86: Comparison of Voltage during US06 Drive-Cycle	. 204
Figure IV - 87: Comparison of cell temperatures during US06 Drive-Cycle	. 204

Figure IV - 88: Voltage response from the created electrochemical model for the JCI VL6P cell over a 30min drive cycle compared to test work (Voltage scale removed)	208
Figure IV - 89: Voltage response using the electrochemistry model for the JCI VL41M cell over a 30min drive cycle compared t test work (Voltage scale removed)	to 208
Figure IV - 90: Voltage response using the electrochemistry model for the PL27M cell over a 30min drive cycle compared to te work (Voltage scale removed)	st 208
Figure IV - 91: Comparison of lumped electrochemistry model vs three dimensional electrochemistry model over a 30min drive cycle (Voltage scale removed)) 208
Figure IV - 92: VL6P 12 module used for thermal valication of the 3D model within STAR-CCM+	208
Figure IV - 93: High-fidelity volume model created within STAR-CCM+	208
Figure IV - 94: Thermal result for a cell within the VL6P module (Red line is simulation, Green experiment)	209
Figure IV - 95: Conductivity of LiPF ₆ in PC/EC/DMC as a function of LiPF ₆ concentration for 333, 313, 293, and 263 K	209
Figure IV - 96: Thermal contours at t=500 sec under cold-start discharge scenario	211
Figure IV - 97: Current and temperature of cells #1 and #2 (group 1); cell 1: blue, cell 2: red	211
Figure IV - 98: Normalized current distribution (I _N /I _{average}) over the length of an electrode sheet (x/L); shown over cell DOD at a discharge current at 21°C. One positive tab, one negative tab; tabs co-located at x/L = 0	1C 212
Figure IV - 99: Particle transfer current density and stoichiometry number evolution during 6-C constant current discharge (N=100)	215
Figure IV - 100: Particle stoichiometry number evolution during mid-size sedan HEV (left) and PHEV10 (right) US06 driving (N=100)	216
Figure IV - 101: Illustration of the interaction between thermal, electrochemical and mechanical components of pressure- generation within a lithium-ion cell	218
Figure IV - 102: Contribution of the gas-generating reactions, vaporization of volatile components and the mechanical constrain imposed by the casing to the overall pressure-build-up within a lithium-ion cell: the purely mechanical terms dominate the beginning of the test, while kinetic and thermal terms take over with the progression of the abuse reactions.	nt 219
Figure IV - 103: Point of failure of a fully discharged cell coincides with the point of test, where as that for a fully charged cell is significantly different.	; 219
Figure IV - 104: NREL's cell venting simulation results show that for propagation purposes, the location of cell failure does not always coincide with the location of crush	220
Figure V - 1: Rate performance comparison of scaled-up carbonate and hydroxide to bench-scale materials	228
Figure V - 2: C/3 cycle life comparison of scaled-up carbonate and hydroxide to bench-scale materials	228
Figure V - 3: Preparation of electrode with different porosity for ES-20120709+11	229
Figure V - 4: Rate performance comparison of electrode with different porosity for ES-20120709+11	229
Figure V - 5: C/3 cycle life comparison of electrode with different porosity for ES-20120709+11	229
Figure V - 6: Effect of particle size on particle cracking during calendaring process	230
Figure V - 7: Comparison between secondary particle morphology, size and tap density of carbonate cathode material (Li1.39Ni0.33Mn0.67Oy)	230
Figure V - 8: XRD comparison between Toda HE5050, JPL bench-scale and ANL scaled-up JPL hydroxide materials	231
Figure V - 9: Voltage profile of Argonne scaled-up JPL hydroxide material (lot #: ES-20131004)	232
Figure V - 10: Voltage profile of Argonne scaled-up JPL carbonate material (lot #: ES-20130924)	232
Figure V - 11: Electrolyte Materials Process R&D Workflow	235
Figure V - 12: (a) SEM image of silicon powder from Alpha Aesar, and (b) capacity results for a silicon electrode (76 wt.% Alph	na
Aesar silicon, 10 wt.% C-45, and 14 wt.% LiPAA with citric acid buffer) vs. Li metal in 2032 coin cell (capacity limited cycles)	240

Figure V - 13: Silicon-graphite electrode using NanoAmor silicon powder vs. Li metal in coin cells. These cells were able to maintain capacities over 400 mAh/g for the first 40 cycles	240
Figure V - 14: Comparison between Electrochemical Materials' (EM) surface-treated silicon against that of a silicon powder the has not been treated, both using PVDF as the binder. The EM electrode is 9 wt.% EM-treated silicon, 51 wt.% graphite, 10 wt.% carbon black, and 30 wt.% PVDF	at 5 241
Figure V - 15: Voltage profile of Si-graphene from XG Sciences in a half cell during formation cycles	241
Figure V - 16: Cycling (top) and coulombic efficiency (bottom) of silicon electrode with PFFOBM conductive binder from LBNL. Note that, in the top curve, the lower cutoff was raised from 10 to 200mV at 20 cycles in the green data, result in a drop in capacity	ting 242
Figure V - 17: Voltage profile of Li/LiCoO ₂ cell at C/10 rate	243
Figure V - 18: Rate study and cycling performance data for Li/LiCoO2 half cell	243
Figure V - 19: Voltage profile of Li/LiFePO4 half cell during formation cycles	243
Figure V - 20: SEM images of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ (top) and similar material with 1 wt.% AIPO ₄ coating (bottom). SEM from Argonne's Post Test Facility	ו 244
Figure V - 21: Different capacity plot of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ with and without AIPO ₄ coating	244
Figure V - 22: a) Voltage profile and b) average voltage as a function of cycling for Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ with and without AIPO ₄ coating	244
Figure V - 23: Plots for full cells containing the alumina-powder modified positive electrode showing (top) discharge capacity a columbic efficiency changes with cycle number, voltage range, and current, and (bottom) EIS data after initial cycles (black) and after fifty 2-4.6 V cycles (red)	ınd 245
Figure V - 24: Formation cycles of LMR-NMC using aqueous binder from JSR Micro	245
Figure V - 25: Voltage profile of graphite/LMR-NMC cell using aqueous binders from JSR Micro	246
Figure V - 26: Chemical structures of additives used in this work	246
Figure V - 27: Capacity and capacity retention of full cells cycled at 30°C between 2.2 and 4.6 V at a 15 mA/g rate showing the effect of various additives in the Gen2 electrolyte. The capacity values (and cycling current) are based on the Li _{1.2} Ni _{0.15} Mn _{0.55} Co _{0.1} O ₂ content in the positive electrode	e 247
Figure V - 28: Capacity-voltage plots for full cells containing the Gen2 electrolyte and Gen2+0.5wt% PFO-EC electrolyte. The data were acquired with a 15 mA/g(oxide) current in the 2.2-4.6 V voltage window at 30°C. The initial data are similar for cells with and without the additive	, 247
Figure V - 29: AC impedance spectra of Li _{1.2} Ni _{0.15} Mn _{0.55} Co _{0.1} O ₂ //graphite full cell after (a) formation cycles, (b) 200 cycles at 30°C with and without 0.5 wt% PFO-EC.	248
Figure V - 30: SEM images of MERF Li _{1.25} Ni _{0.3} Mn _{0.62} O ₂ (Lot# 2012-02-22) powder at 1000x. SEM from Argonne's Post Test Facility	248
Figure V - 31: SEM images of MERF Li1.25Ni0.3Mn0.62O2 (Lot# 2012-07-09&11) powder. SEM from Argonne's Post Test Facility.	248
Figure V - 32: SEM images of CFF-B8 for a) Surface and b) Cross section. SEM from Argonne's Post Test Facility	249
Figure V - 33: SEM images of CFF-B13 for a) surface and b) cross section. SEM from Argonne's Post Test Facility	249
Figure V - 34: a) Rate performance results of 8 identical CFF-B8 cells. b) Rate performance results of 8 identical CFF-B13 cel Note: testing was performed at 30°C using 1.2 M LiPF ₆ in EC:EMC (3:7 by wt.). Trend line in both plots is the average log fit for the 8 cell data series	ls. 249
Figure V - 35: Cycle life plot of a CFF-B13 pouch cell with ~400 mAh C/1 capacity and 169 cm ² cathode area, at 30°C, and C/ rate. C/24 rate (data points included in plot) and HPPC (data points not reported in plot) performed every 50 cycles. 4.4 V to 2.5 V voltage window used	'2 250
Figure V - 36: Discharge capacities for original (un-milled) and milled LMR-NMC powder from MERF versus lithium as a functi of discharge time in 2032 coin cells. Voltage window (2.0 - 4.6 V), charged and discharged at C/3 (11 mA/mg) 1C (33 mA/mg), and 2C (66 mA/mg) rates; 5 cycles at each rate. All electrodes were calendered to ~35% porosity	ion), 250
Figure V - 37: Formation profile used for B9A, B9B, and B9C consisting of sequential cycling with voltage window of 2.5 V to 4 V at C/10, then 4.55 V at C/10, then 4.5 V at C/3, performed at 30°C	i.1 251

Figure V - 38: Rate Study of B9A, B9B, and B9C. Testing performed at 30°C. Voltage widow of 2.5 V to 4.5 V. Nominal rates C/5, C/2, 1C and 2C at 3 cycles each were used. The 3 rd cycle for each rate is plotted above	of 251
Figure V - 39: HPPC data for B9A, B9B, and B9C pouch cells. Testing performed at 30°C. Voltage window of 2.5 V to 4.4 V v 5C discharge pulse with 3.75 charge pulse at 10 s each	vith . 251
Figure V - 40: Cycle life study of B9A, B9B, B9C cell builds. Plot does not include cycle data from formation, rate study, or HF testing. All testing was performed at 30°C. Voltage window of 2.5 V to 4.4 V. Cells cycled at C/2 rate, with interruptions every 50 cycles for RPT/HPPC tests (data not shown in plot above)	РС . 252
Figure V - 41: Pouch cell data of the initial 5 minute C/10 tap charge (a) and the subsequent C/10 charge of the 1st cycle dQ/ that occurs after the 24 hour rest step (b) using various additives. (All data above is from CFF-B9 "HE-5050 v A12," except for the series "Gen2 + MERF LiDFOB" which is CFF-B12 "NHE5050 vs. A12." "Gen2" electrolyte 1.2 M LiPF ₆ in EC:EMC 3:7 by wt.%. "Gen2 + LiDFOB" is Gen2 + 2 wt.% LiDFOB. "Gen2 + LiDFOB + LiBOB Gen2 + 2 wt.% LiDFOB + 1wt.% LiBOB. "Gen2 + MERF LiDFOB" is Gen2 + 2 wt.% MERF-made LiDFOB)	dV /s. e is " is . 253
Figure V - 42: Typical discharge capacity plot of data from multiple cells showing an averaged trend line generated to predict expected C-rate from the rate study test results (data provided from 8 pouch cells; CFF-B9A, "HE5050 LMR- NMC vs. A12 Graphite")	an .254
Figure V - 43: Typical HPPC ASI vs. OCV plots of average data with sample standard deviation error bars from multiple cells (data provided from 8 pouch cells; CFF-B9A "HE5050 LMR-NMC vs. A12 Graphite") for a) charge and b) discharge.	. 255
Figure V - 44: Example comparison plots exhibiting the powerful capabilities of the cycle life excel macro/template. The plots show the HPPC area specific impedance versus OCV, as a function of cycle life (color gradient) for "Baseline Cells" and "Reformulated Cells." Note that the impedance is higher at lower voltages for both sets of cells. Th impedance rise for the Reformulated cells is lower than that of the Baseline cells for the entire life of the cell (data provided from 1 Baseline pouch cell; CFF-B4A, "HE5050 LMR-NMC vs. A12 Graphite" and from 1 Reformulated pouch cell; CFF-B9A, "HE5050 LMR-NMC vs. A12 Graphite")	; ie . 256
Figure V - 45: Typical discharge capacity vs. cycle number plot of average data with sample standard deviation error bars from multiple cells (data provided from 2 pouch cells; CFF-B9A, "HE5050 LMR-NMC vs. A12 Graphite")	m .256
Figure V - 46: Raman spectra from (a) fresh positive electrode, (b), (c) positive electrodes harvested from cells after initial cycles and after 1500 cycles, respectively. Band intensities are normalized to the G-band	cles, 256
Figure V - 47: SIMS sputter depth profiles from negative electrodes after (a) Initial cycles, and (b) 1500 cycles. Data for carbo manganese, nickel, cobalt and lithium are shown. The Y-axis scales are the same for (a) and (b), but the X-a scales are different.	on, xis .257
Figure V - 48: Capacity vs. cycle number plot for a full cell containing a Li ₄ Ti ₅ O ₁₂ –based negative electrode. The data were acquired at 30°C, with 0.1 mA/cm ² (~C/10) and 0.5 mA/cm ² (~C/2) currents, in the 0.75–3.15V cycling window the corresponding positive electrode cycling window is ~2.3–4.7V vs. Li/Li ⁺ . A 1 mAh/cm ² full cell capacity val roughly equals 150 mAh/g-oxide in the positive electrode.	w; lue . 258
Figure V - 49: LMR-NMC electrode impedance (100kHz-10mHz) at 3.74 volts vs. lithium taken during the charge and discharge half cycles with a micro-reference electrode cell	ge 259
Figure V - 50: The first five cycles of half cells of NMO with, top, C45 conductive additive, and, bottom, Super PLi	263
Figure V - 51: Top, SEM of NMO; bottom, SEM of NMFO. Materials appear nearly identical	264
Figure V - 52: Top, capacity <i>versus</i> cycle number for a full cell of graphite/NMO; bottom, capacity <i>versus</i> cycle number for graphite/NMFO. Note the large capacity decline in the early cycles for both cells	. 264
Figure V - 53: Capacity versus current density for three loadings	265
Figure V - 54: Capacity and efficiency versus cycle number	265
Figure V - 55. Energy and efficiency versus cycle number	265
Figure V - 56: Capacity per gram of cathode active material versus cycle number at elevated temperature	266
Figure V - 57: Energy per gram of cathode active material versus cycle number at elevated temperature	266
Figure V - 58: Specific capacity (mAh/g) of a representative Si-composite 1/2 cell vs. lithium	268
Figure V - 59: DSC profiles for graphite, LTO and Si-composite anodes	268

Figure V - 60: DSC profiles for LMR-NMC at 4.6 V and NMC 111 at 4.2 V	
Figure V - 61: (Top) DSC profiles of Al ₂ O ₃ ALD coated graphite and uncoated graphite and (bottom) ARC pro coated electrodes and uncoated electrodes in an NMC/graphite 18650 cell	files for Al ₂ O ₃ ALD 269
Figure V - 62: (Top) cyclic voltammetry of candidate ILs and (bottom) specific capacity at C/10 of NMC/graph different IL-3 fraction electrolyte formulations	ite coin cells with 270
Figure V - 63: Argonne Post-test facility. The inert-atmosphere glovebox used for sample harvesting and anal background	lysis is shown in the272
Figure V - 64: NiMn spinel / graphite pouch cell being disassembled from analysis. In this case, the cathode of from the AI current-colletor due to adhesion failure	coating delaminated
Figure V - 65: SEM micrograph of aged Li-Mn rich NMC electrode. EDS analysis indicates presence of fluorin reaction products	nated electrolyte
Figure V - 66: XPS comparison of pristine and aged LMR- NMC and NiMn spinel electrodes. Note that sputte surface layers (binder, conductive additives) is needed to expose active oxides in pristine ma	r cleaning of aterial272
Figure V - 67: The first 21 galvanostatic charge/discharge cycles for LMR-NMC vs. Li in the 2.0-4.7V range at measured (A) and capacity normalized (B). A depression of the voltage profiles is apparent for discharge curves after capacity normalization. A capacity of unity refers to 319 mAh-goxide ⁻¹ (a mAh-goxide ⁻¹ (after 1 st discharge), and 248 mAh-goxide ⁻¹ (after 20 th discharge). Black arrows ind of the six current interrupts used to calculate the average resistances. The inset table in the I resistances as a function of the interrupt voltage for the 2 nd and 20 th cycle. fade	t 30°C, as- or charge and after 1 st charge), 277 licate the positions ower plot shows cell
Figure V - 68: Differential capacity plots of the first 20 galvanostatic charge/discharge cycles after the initial at LMR-NMC vs. Li over the 2.0-4.7V range at 30°C. The initial activation cycle is removed to his that occur after activation. Increasing peak intensities and a shift to lower voltages at around fade	ctivation cycle for ighlight the changes 3.1V reveal voltage
Figure V - 69: Average voltages, corrected and uncorrected, as a function of cycle number for the LMR-NMC voltages during charge are plotted in light/dark green, and those during discharge are plotted Voltage fade and voltage gap are apparent. Corrected average voltages drop by a total of 18 and by 124mV during discharge. Thin dotted lines are intended only as a guide to the eye, ar all subsequent figures	<i>vs.</i> Li. Average I in orange/red. 5mV during charge nd are also shown in
Figure V - 70: Mean and standard deviations, of the resistance-corrected average voltages during cycling, for containing the same LMR-NMC oxide, top during chargem, bottom during discharge. The x-n mean. The largest standard deviation from the mean, ±6.6 mV, is found after 21 cycles durin comparison, square- and diamond markers indicate the average voltages for a baseline cell a baseline cell, respectively. The electrode formulation for the improved baseline cells is chang added to the electrolyte. As a result of these modifications, the cell resistance is much lower	⁻ five cells narkers indicate the ig charge. For and for an improved ged and LiDFOB is after 20 cycles 281
Figure V - 71: Discharge energies as a function of cycle number for the LMR-NMC-based baseline and modific cycling window is 2.0-4.7V. The measured energy densities for both cells are given by the x-se Energy loss comprises contributions from capacity loss, resistance effects, and voltage fade. due to voltage fade is given by the squared data points. The relative contributions of capacity resistance effects (blue), and voltage fade (red) after 20 cycles after activation are measured plotted for each cell in the pie charts. Voltage fade is a significant contributor to the overall er	ied cells. The shaped data points. Energy loss only (loss (green), separately and nergy loss
Figure V - 72: Effect of cycling window on the corrected average voltage and its fade during discharge for the baseline material. For the first activation cycle, the cycling window is kept constant for all sam 4.7V. During cycling, only the lower cut-off is kept constant at 2V. The degree of voltage fade upper cut-off increases. Voltage relaxation at the beginning of discharge down to ~4.5V force voltage after the 2 nd discharge to be nearly the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the same for the data sets with the three highest of the data sets with the data sets with the three highest of the data sets with	LMR-NMC nples, i.e., 2.0V – increases as the sthe average cut-off voltages . 282
Figure V - 73: Effect of temperature on the corrected average voltages of the LMR-NMC baseline material un identical cycling conditions	der otherwise 282
Figure V - 74: Voltage profiles and corrected average voltages as a function of cycle number for selected layer cycling window ranges from 2.0V to 4.7V. On the left hand side, all capacities are normalized shows the 1 st ("activation") cycle; the dotted one the 20 th cycle. On the right hand side, the top	ered oxides. The I. The solid line p and bottom curves

are the corrected average voltages during charge and discharge, respectively. All materials exhibit some degree of voltage fade if cycled to 4.7V <i>vs</i> . Li	e 33
Figure V - 75: Voltage profiles and corrected average voltages as a function of cycle number for NCA and NMC. Both materials are cycled over two different voltage windows, 2.0-4.25V (top panels) and 2.0-4.7V (middle panels), with the first cycle <i>always</i> ranging from 2.0V to 4.7V. All capacities are normalized. The solid line shows the 1 st cycle; the dashed one the 2 nd (only shown for the 2.0-4.25V window); the dotted one the 20 th cycle. The lower panels show the corrected average discharge voltages for the two voltage ranges. Both materials exhibit some degree of voltage fade only when cycled up to 4.7V vs. Li	st w 84
Figure V - 76: Discharge energies for LMR-NMC (embedded in the modified baseline cell), NCA, and NMC for two voltage windows (2.0-4.25V and 2.0-4.7V) as a function of cycle number. Note that all materials are charged to 4.7V vs. Li/Li* at 10 mA-g _{oxide} -1 during the first cycle to ensure consistent testing among all materials and to ensure that the higher capacities of the LMR-NMC are accessed	86
Figure V - 77: Specific capacity as a function of cycle number for the (1-z)[(x)Li ₂ MnO ₃ •(1-x)LiMn _y Ni _y Co _{1-2y} O ₂]•zLiM" ₂ O ₄ system The color markers and different shapes represent the different compositions studied	1. 30
Figure V - 78: Specific capacity as a function of cycle number for the (1-z)[(x)Li ₂ MnO ₃ •(1-x)LiMn _y Ni _y Co _{1-2y} O ₂]•zLiM ² ₂ O ₄ system The color markers and different shapes represent the different compositions studied	1. 90
Figure V - 79: Specific capacity as a function of cycle number for the (1-z)[(x)Li ₂ MnO ₃ •(1-x)LiMn _y Ni _y Co _{1-2y} O ₂]•zLiM' ₂ O ₄ system The solid and dashed color lines represent the different compositions studied	91
Figure V - 80: Example XRD patterns of the materials indicated in the legend	91
Figure V - 81: XRD patterns showing the effect of lithium:metal ratio. With more lithium, the difference between the peaks decreases	91
Figure V - 82: Cell potential vs. normalized capacity. The upward (discharge) and downward (charge) ticks in each curve represent the current interrupts	92
Figure V - 83: Relative change in average voltage vs. cycle count. The abbreviations in the legend reflect different Li, Mn, Ni, ar Co stoichiometries. The composition of TODA HE5050 is 0.5Li ₂ MnO ₃ •0.5LiNi _{0.375} Mn _{0.375} Co _{0.25} O ₂	1d 92
Figure V - 84: Example of some of the results from fitting a four-term polynomial to the \triangle AvgV data	93
Figure V - 85: (a) Contour plot of <i>in situ</i> high-energy XRD patterns during solid state synthesis of Li ₂ MnO ₃ . (b): Contour plot of <i>ir situ</i> high-energy XRD patterns during solid state synthesis of Li ₂ SnO ₃	า 94
Figure V - 86: Li/Li ₂ M'O ₃ cells	94
Figure V - 87: Voltage fade of Li/0.5Li ₂ MnO ₃ •0.5Li[Ni _{0.375} Mn _{0.375} Co _{0.25}]O ₂ (Toda HE5050 composition) cells	94
Figure V - 88: Al, Fe, and Ga-dopant VF curves	95
Figure V - 89: (a) Ga-dopant VF curves, and (b) capacity vs. cycle no	95
Figure V - 90: (a) Photo of V dopant fired samples. For composition value with x, see text. (b) Li/Li _{1.2} Ni _{0.15} Mn _{0.50} V _{0.05} Co _{0.1} O ₂ coin cells	1 96
Figure V - 91: (a) Data result of cycling the Cr-doped cathodes. For composition value with x, see text. (b) Li/Li _{1.2} Ni _{0.2-x/2} Mn _{0.6-x/2} V _{0.05} Cr _x O ₂ coin cells	96
Figure V - 92: ⁶ Li MAS NMR of pristine TODA HE5050 composite 0.5Li ₂ MnO ₃ •0.5LiMn _{0.375} Ni _{0.375} Co _{0.25} O ₂ , or in layered notation, Li _{1.2} [Ni _{0.15} Mn _{0.55} Co _{0.10}]O ₂	00
Figure V - 93: (a) Li MAS NMR of pristine Li _{1.5} [Mn _{0.5} Co _{0.5}]O _{2.5} synthesized at 850°C for various annealing times. (b) Electrochemical performance of electrodes synthesized under the different conditions. NMR resonances at (ppm and at negative shifts are due to diamagnetic Li in LiCoO ₂ and spinning sidebands, respectively	0 01
Figure V - 94: (a) Li MAS NMR of pristine Li _{1.2} [Ni _{0.15} Mn _{0.55} Co _{0.10}]O ₂ compositions synthesized at 850°C for various annealing times, the inset shows X-ray diffraction data for the same samples. (b) Electrochemical performance electrodes synthesized under the different conditions	; 02
Figure V - 95: (a) and (b) are the deconvoluted 6Li MAS NMR Li _{1.2} [Ni _{0.15} Mn _{0.55} Co _{0.10}]O ₂ after 1 and 10 cycles, respectively. (c) Comparison of ⁶ Li MAS NMR data for cycled Li _{1.2} [Ni _{0.15} Mn _{0.55} Co _{0.10}]O ₂ and (d) electrochemical performance	04

Figure V - 96: ⁶ Li MAS NMR (top) of pristine Li _{1.2} [Ni _{0.15} Mn _{0.55} Co _{0.10}]O ₂ and after 1 and 10 cycles and plots of electrochemical performance (voltage fade data on the left, electrochemical plots on the right)
Figure V - 97: (a) Mn K-edge XANES of Li ₂ MnO ₃ powders electrochemically charged and discharged between 5.1 – 2.0 V. (b) Mn K-edge EXAFS of Li ₂ MnO ₃ powders electrochemically charged and discharged between 5.1 – 2.0 V
Figure V - 98: (a) Mn K-edge XANES after one cycle for Li ₂ MnO ₃ (5.1 – 2.0 V) and LMR-NMC TODA HE5050 (4.7 – 2.0 V). The as-prepared Li ₂ MnO ₃ is shown for reference. (b) Mn K-edge EXAFS after one cycle for Li ₂ MnO ₃ (5.1 – 2.0 V) and LMR-NMC TODA HE5050 (4.7 – 2.0 V). The as-prepared Li ₂ MnO ₃ is shown for reference
Figure V - 99: SAED, high-resolution TEM, and magnetic susceptibility data from pristine TODA HE5050 and after 125 cycles charged to a UCV of 4.2 V and 4.8 V [<i>Physical Chemistry Chemical Physics</i> , 15, 19496, (2013)]307
Figure V - 100: Refinement for HE5050 considering a composite monoclinic- Li ₂ MnO ₃ and trigonal LiMO ₂ (M=Co, Mn, Ni) unit cell. Solid arrow shows the cation-ordering peaks exclusively from monoclinic- Li ₂ MnO ₃ and the dotted arrow marks the (101) reflection in the trigonal phase and (130)/(201) reflections in the monoclinic phase. The inset shows the trigonal (101) plane intensity (a) before Li/Ni exchange and (b) after 3% Li/Ni exchange
Figure V - 101: Voltage fade and (inset) hysteresis in the electrochemical profiles of a Li/Toda HE5050 half cell
Figure V - 102: Fade in the average OCV on discharge as a function of the lower cut-off voltage between the 2nd and 23rd cycles. (inset) Fade data transformed to calendar time
Figure V - 103: Proposed mechanism of transition-metal ion migration that when reversible is the source of hysteresis in LMR- NMC but may irreversibly lead to a lower energy, different cubic environment responsible for the growth of the voltage fade configuration (electrochemically active around 3.1 V)
Figure V - 104: Illustration of the three distinct electrochemical contributions to the capacity of LMR-NMC electrode materials 314
Figure V - 105: differential capacity plot of NCM, Li2MnO3 and their 50/50 blend
Figure V - 106: Comparision of differential capacity plots of blend and LMR-NMC
Figure V - 107: Assumed open circuit voltage curve as a function of relative lithium concentration in domain
Figure V - 108: Electrochemical model simulation of active material charge and discharge curves at a C/200 rate
Figure V - 109: Electrochemical model simulation of active material rate behavior
Figure V - 110: Electrochemical model simulation of HE5050 LMR-NMC standard electrode half-cell charge and discharge curves at a C/18 rate
Figure V - 111: Volume fraction of domains 2 and 3 in HE5050 LMR-NMC active material from electrochemical model simulation of charge and discharge at a C/18 rate
Figure V - 112: Electrochemical model simulation of HE5050 LMR-NMC standard electrode half-cell GITT experiment (600 second C/18 charge pulse and 6000 second relaxation at about 3.8 volts)
Figure V - 113: Hysteresis loop is not closed at a 70 day hold at 3.7 V from different directions (charge vs discharge). Here shown for the Toda HE5050 material in a lithium half cell
Figure V - 114: Rel. cell capacity vs. cycle count, showing capacity decline with cycle count. The capacity of coated materials tended to decline slower than that of uncoated materials. The relative cell capacity vs. cycle count for the 2- and 3-h LiPON coatings behaved similarly to that seen for the 1-h coating. These data were omitted for the sake of clarity
Figure V - 115: Cell potential vs. normalized capacity, representing the typical charge and discharge voltage response of a cell containing an uncoated cathode in these experiments. Selected curves were removed for the sake of clarity. During the first charge, the LMR NMC material was activated. With continued cycling, the voltage response for both the charge and discharge subcycles changed. The downward tick marks on the charge curves and upward tick marks on the discharge curves represent current interrupts
Figure V - 116: Cell potential vs. normalized capacity, representing the typical charge and discharge voltage response of a cell containing a coated cathode in these experiments. This particular cell contained a zirconia-coated cathode (150°C). Selected curves were removed for the sake of clarity. During the first charge, the LMR NMC material was activated. With continued cycling, the voltage response for both the charge and discharge subcycles changed. The downward tick marks on the charge curves and upward tick marks on the discharge curves represent current interrupts

Figure V - 117:	Typical plot of iR-corrected average cell voltage (Wh/Ah) vs. cycle count from a baseline cell, showing that, during both charge and discharge subcycles, the average cell voltage decreases with cycling. The first cycle w omitted from this plot	/as 324
Figure V - 118:	Lithium perfluoro-t-butoxide (LiPFBO) structure	329
Figure V - 119:	Discharge capacity and CE of LNMO / graphite cells cycled in control electrolyte (or Gen 2 electrolytes) with ar without additives at 25°C	ıd 329
Figure V - 120:	C/3 cycling data with capacity retention and CE for Gen 2 electrolyte without and with A2 additive. The first 25 cycles are at 25°C and the next 25 cycles are at 55°C	330
Figure V - 121:	dQ/dV versus V plots for LNMO/graphite cells at 25°C and 55°C in Gen 2 electrolyte with and without A2 addit	ive 330
Figure V - 122:	Capacity retention of standard LFCP and modified LCP cathodes cycled against Li in standard Gen 2 electroly at 25°C	ie 331
Figure V - 123:	Comparisons of rate performance of Gen 1 LFCP cathode and Gen 2 modified LCP electrode in the standard electrolyte	331
Figure V - 124:	A simulation snapshot showing ordered Li ₂ EDC in contact with the electrolyte. Solvent molecules are shown as wireframe, while Li ₂ EDC and LiPF ₆ are highlighted using a ball and stick model	; 332
Figure V - 125:	Profile of cycle life performance testing (50% DOD) being performing on Quallion 12 Ah cells containing variou low temperature electrolytes	s 336
Figure V - 126:	Discharge capacity (Ah) of Quallion 12 Ah cells containing various low temperature electrolytes at 20°C during the course of life testing	336
Figure V - 127:	Discharge capacity (Ah) of Quallion 12 Ah cells containing various low temperature electrolytes at – 40°C with 2C discharge rate during the course of life testing	a 336
Figure V - 128:	Discharge capacity (Ah) of Quallion 12 Ah cells containing various low temperature electrolytes at - 50°C with a C/5 discharge rate during the course of life testing	а 337
Figure V - 129:	Discharge capacity (Ah) of Quallion 0.25 Ah cells containing various low temperature electrolytes at – 20°C wit a 20.0 C discharge rate (5A)	h 337
Figure V - 130:	Cycle life (Ah) performance of 0.25Ah MCMB-LiNiCoAlO ₂ cells (Quallion, LCC) containing various electrolytes 20°C, using C rate charge and discharge over a voltage range of 2.50V to 4.10V	at 338
Figure V - 131:	Cycle life (Wh) performance of 0.25Ah MCMB-LiNiCoAlO ₂ cells (Quallion, LCC) containing various electrolytes 20°C (using C rate charge and discharge)	at 338
Figure V - 132:	Cycle life performance of LiFePO4-based A123 cells containing various electrolytes at +23°C	39
Figure V - 133:	Discharge performance of graphite-NMC coin cells containing various electrolytes at -20°C (using a C/2 discharge rate). The cells were charged at room temperature prior to discharge	340
Figure V - 134:	Discharge performance of graphite-NMC coin cells containing various electrolytes at -20°C using a range of discharge rates (C/20 to 2.0C). The cells were charged at room temperature prior to discharge	340
Figure V - 135:	General heterocyclic phosphazene structure	343
Figure V - 136:	INL prolonged thermolysis testing results	344
Figure V - 137:	Electrochemical window enhancement with INL FTI-series phosphazene additives	345
Figure V - 138:	INL demonstration of reduced flame duration	345
Figure V - 139:	INL additive-included electrolyte performance with ABR electrode couples	346
Figure V - 140:	Post-formation capacities for representative cells containing phosphazene-based polymer anode and thicker HE5050-type cathodes	347
Figure V - 141:	Demonstration of low self-discharging behavior at elevated voltage for cells with early generation phosphazene	;
	anodes	347
Figure V - 142:	Capacity improvement with increased effective surface area within polymer matrix	347
Figure V - 143:	Dual/hybrid (atomistic and micro-clustering) mode of lithium residency	348

Figure V - 144:	Fluidized Bed Reactor to coat powders with ALD cycles: the existing reactor at ALD Nanosolutions can process up to 8L of powder per batch	s 350
Figure V - 145:	Cycling performance of ALD Coated Mn-rich Cathodes	350
Figure V - 146:	Charge consumed in the electrolyte oxidation side reactions during model "charge-discharge" scans of untreated (red), and CO ₂ heat-treated Super-P/PVdF electrodes (blue) during the first ten cycles	əd 353
Figure V - 147:	Discharge capacity vs. cycle number of coin cells utilizing LiNi _{0.33} Co _{0.33} Mn _{0.33} O ₂ (NMC) and pristine (red) or heat treated (blue) carbon black in EC:DEC 1:2 1M LiPF ₆	at 354
Figure V - 148:	Cross-talk visualization by the means of fluorescence spectroscopy (distance between anode and cathode 14 mm, electrolyte EC:DEC 1:2 1M LIPF ₆) and corresponding voltage profile for the A12-He5050 full cell cycle galvanostatically between 4.55 and 2.5 V vs. Li/Li ⁺)	:d 355
Figure V - 149:	<i>In situ</i> TR-XRD patterns and simultaneously measured MS for O ₂ released from Li _{0.3} Ni _{0.15} Mn _{0.55} Co _{0.1} O ₂ during heating to 550°C. The right panel shows the models of ideal crystals with rhombohedral (layered), spinel, and rock-salt structures	358
Figure V - 150:	Time resolved XRD pattern combined with simultaneously measured mass spectroscopy (MS see the results in Figure V - 151) during heating up to 600°C for three charged (4.3V) Li _x Ni _{1-2y} Co _y Mn _y O ₂ samples with y=0.3, y=0.2, and y=0.1	า 359
Figure V - 151:	Simultaneously measured MS data that trace oxygen gas release of charged (4.3V) Li _x Ni _{1-2y} Mn _y Co _y O ₂ samples (with y=0.3, 0.2, and 0.1) in comparison with charged(4.3V) Li _x Ni _{1/3} Mn _{1/3} Co _{1/3} O ₂ and Li _x Ni _{0.5} Mn _{0.3} Co _{0.2} O ₂ during heating up to 600°C	; J 359
Figure V - 152:	During constant voltage charge at 4.8V for a Li _{1.2} Ni _{0.15} Mn _{0.55} Co _{0.1} O ₂ electrode, Ni, Co, Mn reacted simultaneous which was recorded by a time-resolved XAS technique. Magnitude of Fourier transformed Mn K-edge spectra Li _{1.2} Ni _{0.15} Mn _{0.55} Co _{0.1} O ₂ collected during 4.8V constant voltage charging and projection view of corresponding N O, Co-O, Mn-O peak magnitudes of the Fourier transformed K-edge spectra as functions of charging time3	sly of Ii- 360
Figure V - 153:	Digital images of electrospun-composite membranes on an Al substrate: a) after the deposition of PFO/PEO lag and b) after the deposition of both PFO/PEO and P3BT/PEO layers	yer 363
Figure V - 154:	Top-view SEM images of an electrospun PFO/P3BT composite membrane: a) PFO side and b) P3BT side 3	363
Figure V - 155:	a) Charge-discharge cycling profiles and b) specific capacities as a function of the cycle number of a Li _{1.05} Mn _{1.95} O ₄ half-cell overcharge protected by the electrospun PFO/P3BT composite separator	364
Figure V - 156:	a) Charge-discharge cycling profiles and b) specific capacities as a function of the cycle number of a LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ half-cell overcharge protected by the electrospun PFO/P3BT composite separator	364
Figure V - 157:	Varying-rate cycling profiles of a Li _{1.05} Mn _{1.95} O ₄ /Li pouch cell overcharge-protected by the PFO/P3BT glass-fibe composites: a) C/8 rate and 125% overcharge, b) C/4 rate and 150% overcharge and c) C rate and 300% overcharge	r 365
Figure V - 158:	a) Cyclic voltammogram of PFOP in 1M LiPF ₆ in EC: DEC electrolyte and b) cycling profiles of a LiFePO ₄ half- overcharge-protected by the PFOP composite separator	cell 365
Figure V - 159:	(top) DSC of NMC cathodes and (bottom) 18650 cells with in 1 M LiF/ABA-1A in EC:EMC (3:7) and in 1.2 M LiPF6 in EC:EMC (3:7) electrolyte	368
Figure V - 160:	Crystal structures of LiF/ABA-1A and -1B and (bottom) conductivity of LiF/ABA-1A, -1B, and LiPF ₆ in EC:EMC (3:7)	369
Figure V - 161:	Normalized discharge capacity as a function of cycle number for NMC cells in LiF/ABA electrolyte with and without 2% VC (solid and open symbols)	369
Figure V - 162:	Cyclic voltammetry of LiF/ABA electrolyte with and without 10 mM LiPF ₆ from 0-4.5 V (vs. Li/Li+)	370
Figure V - 163:	Cyclic voltammetry of 1.2 M LiPF ₆ (blue trace), LiF/ABA-1B (green trace), and -2 (red trace) in EC:EMC (3:7). 3	370
Figure V - 164:	Demonstration of electrode coating via slot-die coater	373
Figure V - 165:	A roll of ABR standard A12 graphite anode and NMC532 cathode	373
Figure V - 166	Intermediate samples in battery manufacturing and finished pouch cell	373
Figure V - 167:	Calibration of areal loading of NMC532 cathode with line speed (a, pump speed=40 RPM) and pump speed (b, line speed=1 FPM)	374

Figure V - 168:	Cross-section morphology of A12 graphite anode (a) and NMC532 cathode (b)	. 374
Figure V - 169:	Full cell performance of ABR standard A12 anode and NMC532 cathode (a rate performance; b) capacity loss cycle number and c) RPT capacity vs cycle number. (Data from ANL)	s vs . 375
Figure V - 170:	Comparison of NMC532 cathode performance through slot-die coating and tape casting	. 376
Figure V - 171:	Pouch cell performance a) cyclic performance of a 70 mAh pouch cell and b) rate performance of 1Ah pouch cells	. 376
Figure V - 172:	Pouch material with 5.5 mm depth showing sign of material tearing at the long edges	. 377
Figure V - 173:	Pouch cell showing gas generation during aging process	. 377
Figure V - 174:	Pouch cells with two types of holders	. 377
Figure V - 175:	Comparison in pouch cell performance with two types of holders	. 377
Figure V - 176:	Ion solubility in a saturated aqueous suspension a) LiFePO4 aqueous suspension and b) LiNi0.5Mn0.3Co0.2O2 (NMC 532) aqueous suspension	. 382
Figure V - 177:	Residual moisture in NMC 532 cathodes using various drying temperatures	. 382
Figure V - 178:	Discharge capacity of NMC 532 cathodes after various drying temperatures	. 382
Figure V - 179:	Comparison of performance with various water-soluble binders in NMC 532 half cells	. 383
Figure V - 180:	Cycling performance comparison of full cells with NMC 532 cathodes using JSR Micro TRD202A (aqueous processing) and baseline 5130 PVDF (NMP processing) binders	. 383
Figure V - 181:	Rate performance comparison of full cells with NMC 532 cathodes using JSR Micro TRD202A (aqueous processing) and baseline 5130 PVDF (NMP processing) binders	. 384
Figure V - 182:	Successful scale-up and rate performance of a 3-Ah full pouch cell with a NMC 532 cathode and Solvay PVD Latex binder via aqueous processing	F . 384
Figure V - 183:	A typical ALD chamber with sequentially separated precursor exposures that draws out overall processing time	1e . 387
Figure V - 184:	A simplified schematic demonstrating the in-line spatial ALD concept	. 387
Figure V - 185:	A simple schematic demonstrating the alternate high and low pressure regimes present in the "push-pull" reaconcept.	ctor . 387
Figure V - 186:	Diagram of drum-in-drum reactor format	. 388
Figure V - 187:	Schematic representation of the "digital modular" design concept	. 388
Figure V - 188:	Fabricated and final assembly of the drum-in-drum in-line reactor	. 388
Figure V - 189:	Compulational flow dynamic simulation of gas flow through the precursor introduction module and final construction	. 389
Figure V - 190:	Initial schematic of roller integration within the drum-in-drum reactor design	. 389
Figure V - 191:	Mounted lasers (a); alignment of a two-laser-caliper system to measure the thickness of the electrode coating determining sample thickness with a perfectly aligned system (c); determining sample thickness with calibratic constant while measuring the thickness of the coating (d).	ı (b); ion . 392
Figure V - 192:	Thickness measurement data ($\Delta d/d$) from (a) bare Al foil, (b) TODA HE5050 cathode material, (c) bare Cu foi and (d) ConocoPhillips A12 graphite anode with 95% confidence interval, where d represents the thickness v and Δd is the difference between two contiguous data	l, /alue .393
Figure V - 193:	(a) Schematic of IR thermography experimental setup. The IR camera is set in front of the dried electrode exit the slot-die coater, and the subsequent thermal image is digitally processed. (b) Scan along the TODA HE50 cathode showing the temperature variation, which indicates the presence of defects in the electrode. (c) IR thermography from dried anode shows the increase (line 1) and decrease (line 2) in temperature profile indicating the blister and pinholes in the electrode which could not be visible optically	ting 150 . 394
Figure V - 194:	Desktop Ceres Technologies XRF unit	. 395
Figure V - 195:	Optical images (top left), XRF data (top right), and composition spectrum (bottom) from two different regions of NMC 532 electrode contaminated with Co and Cu. The spectrum shows the presence of Cu in the electrode.	of . 395

Figure V - 196: XRF data from sample 2a (NMC532-Cu). Optical image (left) and relative wt% of transition metal composition with Cu impurity from area R1 and R2 (right)
Figure V - 197: XRF data from Sample 2b (NMC532-Co). Optical image (left) and relative wt% of transition metal composition with Co impurity (right) from region R1 and R2 (right)
Figure VI - 1: BATT approach overview
Figure VI - 2: BATT focus areas
Figure VI - 3: dQ/dV data taken over consecutive voltage windows of 2.0-3.7, 2.0-4.1, and 2.0-4.7 V at 5 mA/g for Li/xLi ₂ MnO ₃ •(1- x)LiNi _{0.5} Mn _{0.5} O ₂ cells with various values of x after activation to 4.7 V. x values are provided at the upper left of each panel; data from each window are color-coded for clarity
Figure VI - 4: (a) Hysteresis as a function of x measured as the difference between charge and discharge voltages (ΔV) at 50% SOC. (b) Growing capacity associated with the initial (cycle 2, circles) and final (cycle 30, stars) voltage fade of the material (2.0-3.7 V charge capacity) as a function of x
Figure VI - 5: (a) Mn and (b) Ni K-edge XANES data of the as-prepared xLi ₂ MnO ₃ •(1-x)LiMn _{0.5} Ni _{0.5} O ₂ cathodes along with Li ₂ MnO ₃ and NiO reference spectra
Figure VI - 6: (a) Mn and (b) Ni K-edge EXAFS of the as-prepared xLi ₂ MnO ₃ •(1-x)LiMn _{0.5} Ni _{0.5} O ₂ cathodes for various values of x
Figure VI - 7: (a) Mn and (b) Co K-edge EXAFS data of 0.5Li ₂ MnO ₃ •0.5LiCoO ₂ powders prepared under different annealing conditions
Figure VI - 8: <i>Time-resolved</i> XRD patterns acquired during <i>in situ</i> synthesis of ε-CVO410
Figure VI - 9: Structural and electrochemical properties of ε-CVO powder. (a) XRD pattern (with refinement), and morphology (by SEM; inset), (b) galvanostatic cycling profiles and cyclability (inset), (c) HRTEM imaging, (d) FFT of (c), (e) e-diffraction pattern, (f, g) simulations
Figure VI - 10: Structural change of ε-CVO with lithium reactions, via (a) XRD, (b, c) dark field images
Figure VI - 11: Redox of V, Cu, and local structural re-ordering in ε-CVO by <i>in situ</i> XAS. (a) voltage profile, (b) V K-edge XANES spectra, and (c) Fourier transform (F.T.) of the V K-edge EXAFS
Figure VI - 12: Morphology and electrochemical properties of α-CVO. (a, b) SEM image and EDX mapping, (c) galvanostatic voltage profiles
Figure VI - 13: Structural characterization of polyanion-type materials synthesized <i>via</i> hydrothermal ion exchange. (a,b) XRD patterns of precursors and Li-exchanged final products, (c) time-resolved XRD patterns from ion exchange process in Na _{1.5} VPO ₅ F _{0.5}
Figure VI - 14: Charge profiles, <i>ex situ</i> synchrotron XRD patterns and lattice parameters as a function of state-of-charge of disordered (top) and ordered (bottom) LiNi _{0.5} Mn _{1.5} O ₄ cathodes
Figure VI - 15: XRD pattern (top left), discharge profiles and SEM image (bottom left) and HR-TEM image of a spray pyrolysed LiNi _{0.5} Mn _{1.5} O ₄ cathode material coated by an ALD process
Figure VI - 16: Cycling profiles between 2.0-4.7V (top left), 2.0-4.3V (middle left) and capacity as a function of cycle number (bottom left) for Li half-cells containing an NMC cathode. Nyquist plots show increased cell impedance upon cycling to high voltages (top right) and upon extended exposure to electrolyte (bottom right)
Figure VI - 17: Surface reconstruction and chemical evolution after charge-discharge cycles. (a) Mn L-edge XAS/TEY spectra. (b) Co L-edge XAS/TEY spectra. (c) Mn L-edge XAS after 5 charge-discharge cycles. (d) Co L-edge XAS after 5 charge-discharge cycles in the AEY (blue), TEY (red) and FY (green) modes. (e) EELS line scan profile for an NMC particle along the <001> direction
Figure VI - 18: Atomic resolution ADF-STEM images of NMC materials with electrolyte exposure and charge-discharge cycles. (a) NMC particle after electrolyte exposure. (b) NMC particle after 1 cycle. (c and d) correspond to the FFT results of the reconstruction shell and NMC layered structure in (b), respectively. (e) Orientation effects on the surface reconstruction shell. (f) NMC particle with loose atomic layers after 1 cycle
Figure VI - 19: STEM/EELS analysis of surface reaction layer (a) STEM image. (b) Broad EELS scan. (c) Li K-edge. (d) O K- edge. (e) F K-edge

E:	OFM increases (NV/Machine) as which is a durity shirt in a surgery in a VIOI and D-400. (VI io) and
Figure VI - 20:	R=50, and c) eutectic LiCI-KCI flux
Figure VI - 21:	Phase transformation in disordered LiNi _x Mn _{2-x} O ₄ crystals: a) x=0.5 and b) x=0.3. (left) charge and (right) discharge
Figure VI - 22:	Evolution of the XRD superlattice peaks during the first delithiation in Li _{1.2} Ni _{0.13} Mn _{0.54} Co _{0.13} O ₂ crystals: a) plates, b) needles, c) large and d) small polyhedrons
Figure VI - 23:	XAS L-edge spectra of Li _{1.2} Ni _{0.13} Mn _{0.54} Co _{0.13} O ₂ electrodes at the indicated stage of cycling: a) Ni and b) Mn 422
Figure VI - 24:	a) STXM image of a Li _{1.2} Ni _{0.13} Mn _{0.54} Co _{0.13} O ₂ crystal and b) Ni <i>L</i> -edge X-ray absorption spectra collected at the indicated single-pixel as well as the entire crystal
Figure VI - 25:	Half-cell cycling performance of a) plate and (b) octahedral LiMn _{1.5} Ni _{0.5} O ₄ crystal electrodes
Figure VI - 26:	Nyquist plots for the LiMn _{1.5} Ni _{0.5} O ₄ crystal electrodes at the indicated Li content: a) plates and b) octahedrons; the relationships between lithium content and c) surface-layer resistance and d) charge-transfer resistance
Figure VI - 27:	Summary of <i>operando</i> XRD data collected upon Li deintercalation in a series of LiNi0.5Mn1.5O4 samples showing varying degrees of cationic ordering
Figure VI - 28:	Scanning electron micrographs of a) baseline LiNi _{0.5} Mn _{1.5} O ₄ , and after applying a Mg-based coating, treated at b) 500 and c) 800°C
Figure VI - 29:	Zoom of the region around 531 eV in the O K-edge XAS data, highlighting the differences in intensity of the 530.2 eV shoulder depending on the sample. The data correspond to the baseline material (black), as well as after applying a Mg-based coating, treated at 500 (red) and c) 800°C (green), which were fully oxidized in Li metal cells at a) room temperature and b) 50°C
Figure VI - 30:	Panels A to D: 2D XANES chemical maps of Mn within the LRM-NMC particles, as a function of cycling. Single pixel XANES (30 nm resolution; ~ 10 ⁶ per FOV) are assigned to green or red based on least squares fitting to the Mn K-edge spectra of pristine, 50 and 200 times cycled electrodes, respectively. (E) Evolution of the Mn K edge with cycling
Figure VI - 31:	(Left) Tomographic reconstruction of two selected LMR-NMC cathode particles after 1 full charge-discharge cycle
Figure VI - 32:	Raman mapping (top) and spectral analysis (bottom) of pristine LMR-NMC composite electrodes. The false color maps show carbon rich regions (red) and metal oxide (cyan); mixed colors are both carbon-LMR NMC regions
Figure VI - 33:	Ratio of the areal intensities for the Eg and A1g band plotted with respect to the band center for various LMR- NMC cathode particles maintained at different SOC
Figure VI - 34:	Impact of various electrolyte additives on the cycle life performance of LMR-NMC electrodes. (Top) Charge- discharge capacity at the 10th cycle is shown for 5 different additives
Figure VI - 35:	Iron phosphate vanadate glasses with different amounts of vanadate substitution (0%, 30%, and 50%) were battery tested at ~C/30 from 4V to 2V. The specific capacity increased dramatically with increased vanadate substitution
Figure VI - 36:	A high capacity 2 nd electrochemical reaction was discovered to occur in polyanion glasses. A discharge curve of Fe ₄ (50% P ₂ O ₇ 50% V ₂ O ₇) ₃ glass (19 mA/g) is shown
Figure VI - 37:	XANES analysis showed how iron valence changed during the discharge of iron phosphate vanadate glass 436
Figure VI - 38:	Cycle testing of iron phosphate vanadate glass showed good cycleability. (C/10 cycling with every 20th cycle at C/50)
Figure VI - 39:	1 st generation (dashed lines) and 2 nd generation (black line) computational thermodynamic models of the equilibrium discharge curve for an iron phosphate vanadate glass benchmarked against an experimentally measured discharge curve (red line)
Figure VI - 40:	 (a) Overview image showing the cathode nanoparticles after cycling; (b) magnified image of the region labeled by the white rectangle shown in (a); (c) Overview image of another region with fragmented pieces of cathode; (d) magnified image of the region labeled by the rectangle in (c); (e) Li map (58.25-65.5eV); (f) C map (282.25-314.75 eV); (g) O map (527.75-564eV); (h) Mn map (634.25-659eV); (i) comparison of O K, Mn L, and Ni L

edges; (k) Mn L edges normalized to Mn L₃ peak; (I) Mn M, and Li K edge comparison of cycled bulk region and fragmented piece region
Figure VI - 41: Voltage profiles of Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ (a) Constant charge at 0.1 C (1C=250 mA/g) and discharged at different rates for the subsequent cycles. (b) Charged at different rates and constant discharge at 0.1 C for the following cycles
Figure VI - 42: Scheme of the functioning mechanism of TPFPB. (a) Thick passivation layer formation in baseline electrolyte; (b) significantly reduced passivation layer formation in TPFPB added electrolyte
Figure VI - 43: (a) Initial charge/discharge profiles at 0.1 C (25 mA g ⁻¹) and (b) long-term cycling performance of cathode material Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ at C/3 after 3 formation cycles at 0.1 C. The inset of (b) is the corresponding Coulombic efficiency during cycling
Figure VI - 44: TEM images of fresh electrode and electrodes cycled in electrolytes without and with additive after 300 cycles at C/3 rate. (a) fresh, (b) baseline, (c) 0.1 M TPFPB, (d) 0.2 M TPFPB
Figure VI - 45: typical rate performance of sample Li1.2Ni0.2Mn0.6O2
Figure VI - 46: SEM images of Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ : (a) non spherical pristine material, and (b) homogenous spherical material, both prepared by a co-precipitation method
Figure VI - 47: Comparison of cycling performance between Li1.2Ni0.2Mn0.6O2 samples with different morphologies
Figure VI - 48: a-STEM images for pristine, one and ten times electrochemically cycled electrode materials with their corresponding High-Angle Annular Dark-Field (HAADF) images showing surface rearrangement occurring after cycling
Figure VI - 49: Surface EELS data for the (a) O–K edge spectra, (b) comparison of the pristine and the fully discharged O–K edge, and (c) XPS data for the O1s region
Figure VI - 50: Bulk EELS data for the (a) O–K edge spectra, and (b) comparison of the pristine and the fully discharged O–K edge
Figure VI - 51: (a, b) XPS of surface transition metal ions oxidation status changes; (c) HRSTEM images of surface phase transformation; (d) EELS spectrum from cycled samples
Figure VI - 52: Oxygen formation energy at different Li concentrations
Figure VI - 53: Mn diffusion barrier at Li concentration 20/28
Figure VI - 54: SEM of α-LiVOPO4 prepared in various mixed solvents at 230°C except that in water, which was held at 240°C
Figure VI - 55: First charge–discharge profiles at a C/20 rate of α-LiVOPO4 prepared in various mixed solvents at 230°C except that in water, which was held at 240°C
Figure VI - 56: SEM of α-LiVOPO ₄ prepared with a water:ethanol ratio of 3:1 for the various indicated reaction hold times at 230°C (not including ~ 25 min ramp time to 230°C), V concentrations, and amounts of CTAB solution substituted for water
Figure VI - 57: First charge-discharge curves at C/20 rate of α-LiVOPO ₄ prepared with water:ethanol = 3:1 for various reaction hold times at 230°C, V concentrations, and amounts of CTAB solution substituted for water
Figure VI - 58: (a) SEM image, (b) first two charge-discharge profiles, (c) the highest capacity obtained at various rates, and (d) cycling performance at 1C rate of the Li2MnSiO4/C nanocomposite cathode material
Figure VI - 59: (a) a Si electrode of average particle size of 20 µm before cycling, (b) the same electrode after 20 cycles (vs Li)
Figure VI - 60: (a) the void volume within a Si electrode of average particle size of 20 µm before cycling, (b) the same electrode after 20 cycles (vs Li)
Figure VI - 61: SEM images from the electro-less deposition of metallic Sn from a commercial plating bath on a copper-foam. Total deposition time was 240 seconds
Figure VI - 62: Cycling performance of a Si film on Cu using (a) TEACI as supporting electrolyte salt and (b) using TBACI as the supporting electrolyte salt
Figure VI - 63: ²⁹ Si NMR data collected from four different types of samples is shown. Specifically, the samples are (a) uncycled bulk silicon, (b) an oxidized sample (SiO ₂), (c) TBACI supporting electrolyte, (d) TEACI supporting electrolyte 456

Figure VI - 64:	Sn K-edge XANES for different (top) lithiation states and (bottom) delithiation states of nano-sized Sn-Fe-C 458
Figure VI - 65:	(Top) XRD patterns and (bottom) cycling performance of nanosized Sn-Fe-C materials
Figure VI - 66:	$(Top) \ Electrochemical \ cycling \ and \ (bottom) \ rate \ capability \ of \ nano-Sn_5Fe \ \ldots \ 459$
Figure VI - 67:	(top) XRD patterns and (bottom) electrochemical performance of Sn ₂ Fe materials synthesized by the solvothermal method with different initial molar ratios of Sn:Fe
Figure VI - 68:	Electrochemical Performance of (top) leached nano-silicon, (middle) standard silicon, and (bottom) another company's silicon
Figure VI - 69:	Effect of different binders on the capacity of exfoliated Ti ₃ C ₂ 462
Figure VI - 70:	In situ dilatometry results for exfoliated Ti ₃ C ₂ : electrode expansion %, and voltage during lithiation and delithiation
Figure VI - 71:	$\label{eq:Volumetric} Volumetric and gravimetric capacities of exfoliated and delaminated Ti_3C_2. Inset shows SEM image of an additive-free film of delaminated Ti_3C_2 filtered through the membrane$
Figure VI - 72:	$\label{eq:constraint} \mbox{Electrochemical performance of Nb}_2 \mbox{C and V}_2 \mbox{C (produced by HF treatment of attrition milled V}_2 \mbox{AlC}) \ \mbox{compared to what was reported previously for Ti}_2 \mbox{C}.$
Figure VI - 73:	a) Free-standing additive-free Nb ₂ C MXene disc. b) Areal capacity vs. cycle number for pressed additives-free Nb ₂ C. Inset zooms in on the first 11 cycles for cells with two different loadings squares and crosses are for lithiation capacities, while the circles and diamonds are for delithiation capacities for two discs with loadings of 94 and 136 mg/cm ² , respectively
Figure VI - 74:	(a) The atomic structure of amorphous ALD-Al ₂ O ₃ , the concentration profile of O atoms shows 1.1Å periodicity, (c) LAWS characterization of the mechanical properties of ALD coatings
Figure VI - 75:	Electrochemical Biot number B obtained from PITT measurement
Figure VI - 76:	DFT results show the (a) charge transfer from Li to Cu substrate leads to (b) higher Li/Si ratio at the LixSi/Cu interface. The Li segregation behavior has also been observed in (c) SIMS depth profile
Figure VI - 77:	 (a) Water contact angles on the surfaces of PEFM and PFM films. The E side chains in PEFM increase the polarity, and thus improve the swelling of the polymer. Therefore the PEFM has a lower contact angle with water. (b) The swelling tests of PEFM and PFM polymer film in the 1M LiPF6 EC/DEC (1:1) electrolyte. The electrolyte uptake in PEFM is three times higher than that in PFM, and is at the same level as that for conventional non-conductive PVDF binder
Figure VI - 78:	Peel tests comparison of the electrode laminate made with PFM and FEFM binder. (a) Peel testing photos of the two electrodes during the tests. The photo shows the PFM based electrode was peeled off (left), but PEFM based electrode remains attached to the Cu current collector with only small amount of surface materials peeled off by the tape (right). This shows that the adhesion force of the developed PEFM is too strong to be measured by such conventional method. (b) Force measured during the peel tests of PFM and PEFM based electrodes. Note again that the adhesion force of PEFM based electrode is beyond the measurement range of such method, and actually even higher than the value (1.7 lbf) showed by the red curve
Figure VI - 79:	$\label{eq:cycling} Cycling \ performance \ of \ polymer/Si \ composite \ electrodes. \ (The \ current \ density \ at \ C-rate \ is \ 0.92 \ mAh/cm^2) \ \dots \ 472$
Figure VI - 80:	Pure Sn nanoparticle composite electrodes. (a) Different amount of PFM. (b) Different binders
Figure VI - 81:	The structure of hexylene carbonate (HeC), octylene carbonate (OcC) and dodecylene carbonate (DoC)
Figure VI - 82:	Cycling performances of a graphite half cell in a 1 M LiPF ₆ solution of (a) EC/DEC=1, (b) HeC/PC=4, (c) OcC/PC=2, and (d) DoC/PC=1 (v/v) at a C/10 rate
Figure VI - 83:	FTIR spectra of (a) a standard LPDC, (b) a graphite electrode cycled in a 1 M LiPF ₆ solution of HeC/PC=4 for around 10 cycles at C/10, and (c) the electrolyte used in the cell, 1 M LiPF ₆ in HeC/PC=4
Figure VI - 84:	SEM images of electrodeposited Si before cycling (top) and after 100 cycles of testing for Li/Li ⁺ battery (below)476
Figure VI - 85:	Capacity and columbic efficiency plots cycled at 400 mA/g between 0.02 and 1.2 V for 100 cycles
Figure VI - 86:	SEM images of electrodeposited Si films at (a) 0Hz, (b) 500Hz, (c) 1000Hz and (d) 5000Hz pulse frequency 477
Figure VI - 87:	Schematic depicting alucone MLD reaction
Figure VI - 88:	(a) HAADF-STEM of the alucone MLD coated particle; (b) EELS elemental mapping (Si highlighted in cyan, Al highlighted in red) confirming the conformal alucone MLD coating on the Si composite electrode

Figure VI - 89:	Cycling performance of alucone coated Si anodes by using static and viscous flow modes	480
Figure VI - 90:	Cycling performance as a function of coating thickness	480
Figure VI - 91:	Greatly enhanced cycling stability in alucone MLD coating Si anodes	481
Figure VI - 92:	SEM images showing the cross-sections of the bare electrodes (a, b, c) and alucone coated electrodes (d, e, f) 481
Figure VI - 93:	(A) TEM images and corresponding EDS elemental mappings of the SiO/Fe ₂ O ₃ composite. (B) Cycling performance of SiO, milled SiO, and SiO/Fe ₂ O ₃ composite in 50 cycles between 0.01-1.5V	484
Figure VI - 94:	(A) SEM image of the micro-sized Si-C composite. (B) Cycling performance of the Si-C composite in 200 cycle between 0.01-1.5V	s 485
Figure VI - 95:	(A) Cycling performances of micro-sized Si-C composites with different building block sizes. (B) Rate performa of Si-C composite Si-15nm with different C coating temperatures	nce 485
Figure VI - 96:	(A) XRD patterns of B-doped Si-C and Si-C composites. (B) Rate performance comparison of B-doped Si-C ar Si-C composites.	nd 486
Figure VI - 97:	Cycling performance of commercial Si NP anodes with a range of ion-containing polymer binders	486
Figure VI - 98: /	In situ TEM observation of the lithiation process of an MSS particle. a) -d) TEM images and selected area elect diffraction patterns of the MSS particle at different lithiation states: a) before lithiation; b) 22 min of lithiation; c min of lithiation; d) 160 min of lithiation. Note that the scale bar in b) applies to b-d)	tron ;) 40 489
Figure VI - 99:	Long-term cycling of the MSS electrode with a) 46 wt% and b) 40 wt% Si loading	490
Figure VI - 100	: Cycling stability of the porous Si anode with a high areal discharge capacity of ~1.5 mAh/cm ²	490
Figure VI - 101	Cycling performance of the modified SBG composite with ~12.8 wt% additive	491
Figure VI - 102	: Cycling stability of pre-lithiated Si anodes. a) Modified SBG composite electrode with a high area specific capacity of ~1.5 mAh/cm ² . b) Thin MSS electrode. c) Thick MSS anode with a high area specific capacity of ~ mAh/cm ² .	1.5 491
Figure VI - 103	A proposed decomposition mechanism of FEC	492
Figure VI - 104	Cycling stability of the SBG electrode with CMC-SBR binder	492
Figure VI - 105	: (a) Schematic of in situ device. (b-e) Time series of amorphous Si sphere during lithiation	495
Figure VI - 106	: (a) SEM images of the Si nanoparticles. (b) Galvanostatic cycling of the Si nanoparticle electrode	496
Figure VI - 107	: (a) Schematic illustration of 3D porous SiNP/conductive hydrogel composite electrodes. (b) Lithiation/delithiat capacity and CE of Si-PANi electrode cycled at current density of 6.0 A/g for 5000 cycles	tion 496
Figure VI - 108	: (a) Photo of a crab shell. The inset is TEM image of final carbon nano-channel arrays from crab shell. (b) Schematic illustration of the fabrication procedure for hollow carbon nanofiber arrays encapsulating silicon. Lithiation/delithiation capacity and CE of Si encapsulated crab shell-templated carbon channel	497
Figure VI - 109	Silicon calthrate crystal structure	499
Figure VI - 110	Overlay of powder XRD patterns for the fuel-grade silicide and transformation product, compared with the calculated reflections for the Zintl phase (Na4Si4)	499
Figure VI - 111	: Overlay of powder XRD patterns for the synthesis product and the calculated reflections of empty clathrate (Si46), after subtraction of impurity phases	500
Figure VI - 112	: Lattice constant expansion and energy change associated with lithium insertion in Na- and Ba-stabilized clathrates against those for empty silicon clathrates: (a) lattice constant expansion, (b) energy change	500
Figure VI - 113	Particle morphology of processed Ba ₈ Al ₈ Si ₃₈ milled powder for prototype anode	500
Figure VI - 114	: Long-term cyclic capacity and coulombic efficiency profiles measured for Ba8Al8Si38 anode (10 wt.% Super 10 wt.% PVDF) using ED/DEC/FEC (45:45:10). Cell was allowed to rest at OCP for ~8 hrs at end of 50th and 100th cycles before resuming test	P + 501
Figure VI - 115	Solid-state ²⁷ Al NMR spectra acquired for unlithiated (Ba ₈ Al ₈ Si ₃₈) and lithiated (Li _x Ba ₈ Al ₈ Si ₃₈) clathrate anode material. The results show near-baseline resolution of the three known and magnetically-distinct framework substitution sites for a Type I structure: 6c, 16i, and 24k	501

Figure VI - 116:	Neutron diffraction patterns obtained for Ba8Al8Si38 before (blue) and after lithiation (red), providing evidence that the clathrate framework remains structurally intact up to its theoretical capacity	e 502
Figure VI - 117:	Calculated geometries of adsorbed FEC configurations on a low-lithiated Si (001) surface after 1 or 2 e transprocesses. Image of FEC illustrates bond breaking pathways	fer 504
Figure VI - 118:	Evolution of the EC charge (in e-) as a function of the C-Si distance for various surface facets and termination	is 506
Figure VI - 119:	EC decomposition on the Li ₁₃ Si ₄ -(010) surface. The sequence shows charge transfer to EC and reaction products	506
Figure VI - 120:	FEC decomposition on the $Li_{13}Si_4$ -(010) surface. As the molecule gets adsorbed on the surface (C-Si bond forms), there is a sequential bond breaking illustrated by the time evolution of the respective bond distances.	507
Figure VI - 121:	Decay of electron transfer from the electrode to an EC molecule through a model SEI layer as a function of S thickness. Three model electrodes represent degrees of lithiation of the Si anode	EI 507
Figure VI - 122:	The use of an index matching dielectric liquid in the thin gap between the Si crystal and the ZnSe optic enable tuning of the position of the evanescent wave from the surface of the Si into the bulk	es 511
Figure VI - 123:	Schematic of hSiNT synthesis using inorganic nanowire (INW) template	514
Figure VI - 124:	SEM images of (a) INW template, (b) <i>h</i> SiNTs after acid leaching, (c) HRTEM image of an open ended <i>h</i> SiNT (d) EDAX spectra of <i>h</i> SiNTs	& 515
Figure VI - 125:	Long term cycling of hSiNTs performed at 2A/g (1st cycle at 0.3 A/g)	515
Figure VI - 126:	Electrochemical cycling of <i>h</i> SiNTs using DOE recommended test conditions	516
Figure VI - 127:	Variation of specific capacity vs. cycle number of Si/C composite with PVDF and GG binder	516
Figure VI - 128:	Charge-discharge characteristics of Si/C composite with MAB binder	516
Figure VI - 129:	Structures of the three anhydrides	519
Figure VI - 130:	Cell performance for citraconic acid showing improved cycling	519
Figure VI - 131:	Voltage profile as a function of time (in hours) of LiFePo4/LTO cell at 100% overcharge condition (electrolyte containing 0.4 M OFDDB in the Gen2 electrolyte)	520
Figure VI - 132:	DDB and fluorine modified DDB redox shuttles	521
Figure VI - 133:	Electrochemical window for EMS:DMC (LiPF ₆ 1M)	524
Figure VI - 134:	(Upper) dQ/dV for LNMO high voltage cathode vs. Li+/Li, (Lower) Coulombic efficiency vs. cycle number showing ideal behavior after 20 cycles	524
Figure VI - 135:	Superposition (on expanded scale) of capacity retention plots for LNMO half cell with EMS:DMC(LiPF ₆ 1M) electrolyte and with standard EC:DMC(LiPF ₆ 1M) electrolyte	524
Figure VI - 136:	Half-cell tests at LTO anode: (Upper) Half-cell voltage profiles for charge and discharge vs state of charge for LTO high power anodes Li+/Li, (Upper) Charge and discharge capacities in relation to cycle number, showing almost ideal behavior) 525
Figure VI - 137:	Conductivity of new semi-flexible tetrahedral net, using PEO 600 struts and containing LiTFSi in the interstice Comparison is made with findings of Armand and co-workers on LiTFSI in high MW linear PEO polymers	es. 525
Figure VI - 138:	Synthesis of Li[B(DPC)F ₂ , Li[B(DPC)(oxalato)] and Li[P(DPC) ₃]	528
Figure VI - 139:	Single Crystal X-Ray Structure of Li[P[DPC)3]	528
Figure VI - 140:	Synthesis of Li[(DPN)2]	528
Figure VI - 141:	TGA of FRION Salts	529
Figure VI - 142:	Synthesized Novel Precursors with Target Frions	529
Figure VI - 143:	Cyclic voltammetric curves recorded with a Ni wire electrode in EC/EMC(50/50 by volume) solutions at a scar rate of 10 mV/s, for solutions containing the materials shown in the insets	n 529
Figure VI - 144:	Series of cyclic voltammetric curves of a boron-doped diamond film supported on glass in 1 M LiPF6 in EC/EMC(50/50 by volume) using Li metal as counter reference electrode, recorded at a scan rate of 10mV/s	530

Figure VI - 145:	Methods of immobilizing electrolyte anions in lithium ion batteries. (a) Polyelectrolyte ionomers for use as separators and binders; (b) surface modified carbons for incorporation into composite electrodes to control lithium ion concentration	. 532
Figure VI - 146:	Functionalization of Polysulfone polymer backbone	. 533
Figure VI - 147:	Preparation of Polysulfone substituted with fluorosulfonate groups	. 534
Figure VI - 148:	Background subtracted SAXS data for Nafion® and fluoroalkylsulfonate-substituted polysulfone	. 534
Figure VI - 149:	Preparation of carbon modified with fluorosulfonylimide groups	. 534
Figure VI - 150:	Synthesis of MWCNT@TiO2 nanocables	. 534
Figure VI - 151:	(a) Voltammograms of the CNT@TiO2-C nanocable electrode at a scan rate of 0.1 mV s-1; (b) The first chard discharge voltage profiles at different current rates	ge- . 535
Figure VI - 152:	Cycling performance of graphite /LiNi0.5Mn1.5O4 cell at 25°C (RT) and 55°C (ET)	. 537
Figure VI - 153:	XPS spectra of LiNi0.5Mn1.5O4, fresh and after cycling at 25°C and 55°C	. 537
Figure VI - 154:	Cycling performance of graphite/ LiNi0.5Mn1.5O4 cells with STD and LiBOB containing electrolyte at RT, ET (55°C), and RT	- . 538
Figure VI - 155:	Capacity retention of Li/silicon nano-particle cells cycled with different electrolytes	. 538
Figure VI - 156:	Completed micro-four-line-probe wafer showing: (A) exposed connection pads, and (B) window for exposing four contact lines	the . 541
Figure VI - 157:	Measurement apparatus for electronic conductivity measurements. The probe wafer is gently clamped in an inverted orientation to an aluminum block that descends upon the electrode target. Electrical connections are made to the exposed connection pads. The electrode film target is mounted on a disc that is attached to a for gauge to measure and allow the control of the applied pressure.	e irce . 541
Figure VI - 158:	Simulations of current and potential distributions for two orthogonal electrical measurements of an intact electrode using the four-line probe procedure	. 542
Figure VI - 159:	(A) Relative locations of repeated electrical sampling on 17-mm-diameter circular electrode. (B) Location me conductivities with 95% confidence intervals, showing significant spatial variability of the sample electrode compared to probe variability.	an 542
Figure VI - 160:	AC impedance before and after formation cycles of Li/EC-DEC-LiPF ₆ /Si cells	. 545
Figure VI - 161:	Cycling life of Li/EC-DEC-LiPF ₆ /Si cells at C/6	. 545
Figure VI - 162:	AC Impedance before cycling and cycling life of Li/EC-DEC-LiPF6/Si cells with different loading	. 545
Figure VI - 163:	Cycle life of Li/EC-DEC-LiPF ₆ /Si cells at C/6 with anodes having different loading	. 546
Figure VI - 164:	Cycle life of Li/EC-DEC-LiPF6/Si cells at 1C and C/6 rates	. 546
Figure VI - 165:	Cycle life at C/6 of of Li/EC-DEC-LiPF ₆ /Si cells at different DoD	. 546
Figure VI - 166:	In situ analysis of Li/polymer_LiTFSI/Si cell in polymer matrix	. 546
Figure VI - 167:	Model-experiment comparison of NMC electrode discharge at different rates	. 550
Figure VI - 168:	Potential drop estimation of NMC electrode at 5C	. 550
Figure VI - 169:	Diffusion Coeffcient as a function of concentration for LiPF6 in EC:DEC (1:1) measured using Restricted Diffusion method	. 550
Figure VI - 170:	Variation of $1 - t + 1 + dlnf dlnc$ with concentration for LiPF6 in EC: DEC (1:1)	. 550
Figure VI - 171:	Conductivity as a function of concentration for LiPF ₆ in EC:DEC (1:1)	. 551
Figure VI - 172:	Lithium-occupied mole fraction near end of lithium insertion for active material cylinder sandwiched between binder layers	. 551
Figure VI - 173:	von Mises equivalent stress throughout the active material region	. 551
Figure VI - 174:	Maximum equivalent stress in active material as a function of particle size, compared with reported yield stre	ess . 551
Figure VI - 175:	The crystal structure of Li2MnO3 where the Li layer is shown without local coordination spheres but the combined Li/Mn layers shows the octahedrally coordinated Mn (blue) and Li (green) ions	. 554

Figure VI - 176:	Calculated formation energies of LixMnO3 structures with Li/vacancy defects spanning both the Li and the Mn layer. The blue points signify structures that retain the overall Li2MnO3 structure but the red points correspond to structures with a large deformation and defect formations compared to the parent structure	:0 54
Figure VI - 177:	The equilibrium shape of (a) the ordered spinel structure with a local inverse spinel surface structure and (b) the disordered spinel structure. The (100), (110) and (111) facets are colored violet, grey and turquoise, respectively	; у і5
Figure VI - 178:	SEMs provided in order of first 8 mixing conditions as listed in the tables above	7
Figure VI - 179:	Viscosity versus mixing time at different shear rates	8
Figure VI - 180:	Cycling and coulombic efficiency data for a Graphite/NCM cell, a), without FRION and b), with FRION	9
Figure VI - 181:	Mass spectrograph of the vapor in a coin cell 2 hours into a 10 hour charge (top) and 4 hours into the first charg (bottom). The spikes to the far left on the bottom graph suggest the pressure of hydrogen	е 1
Figure VI - 182.	Upper, Nyquist plot of two-electrode impedance; middle, Nyquist plot of each electrode versus a Li ref. electrode lower, sum of the reference electrode data	э; 2
Figure VI - 183:	SEM of LFP powder	3
Figure VI - 184:	Capacity versus cycle number for an LFP electrode	3
Figure VI - 185:	Voltage versus capacity plotted sequentially. Certain cycles are displayed to high light motion due to side reactions and impedance rise in the cell with time	3
Figure VI - 186:	Best case capacity for single electron redox couples for each anion chemistry	5
Figure VI - 187:	Profile matching of XRD pattern of monoclinic LiMnBO ₃ with and without considering antisite defects in the unit cell	5
Figure VI - 188:	Li trajectory as calculated by ab initio computation	6
Figure VI - 189:	Sodium trajectory as calculated by AIMD simulation	6
Figure VI - 190:	Area capacity vs C-rate of sintered LiCoO ₂ with oriented mesocale porosity prepared by two methods, compared to conventional calendared Li-ion electrodes (H. Zheng, J. Li, X. Song, G. Liu, V.S. Battaglia, <i>Electrochimica Acta</i> 2012, <i>71</i> , 258)	d 8
Figure VI - 191:	(a) Electronic conductivity of NCA as a function of temperature and (b) lithium content	8
Figure VI - 192:	(a) AC impedance spectra obtained from electron-blocking cell at 58°C and fitted with equivalent circuit, (b) lithium ionic conductivity and diffusivity as a function of temperature	9
Figure VI - 193:	Microstructure of ordered (a) LiMn _{1.5} Ni _{0.5} O ₄ , (b) LiMn _{1.5} Ni _{0.42} Fe _{0.08} O ₄	9
Figure VI - 194:	The electronic conductivity of ordered and disordered $LiMn_{1.5}Ni_{0.5-x}Fe_xO_4$ (x = 0.00, 0.08, 0.10, 0.50) as a function of Fe content at 30°C (a) and the electronic conductivity of disordered $LiMn_{1.5}Ni_{0.42}Fe_{0.08}O_4$ as a function of lithium content at 25°C (b)	n ;9
Figure VI - 195.	Li/0.5Li ₂ MnO ₃ •0.5LiMn _{0.5} Ni _{0.5} O ₂ electrodes cycled between 4.6-2.0 V (cycles 1-20) and 5.0-2.0 V (cycles 30-50) at 15 mA/g. The inset shows rate data	3
Figure VI - 196:	Mn K-edge XANES (a) and EXAFS (b) of fresh and cycled 0.5Li ₂ MnO ₃ •0.5LiMn _{0.5} Ni _{0.5} O ₂ electrodes. (a) Includes a Li ₂ MnO ₃ , Mn ⁴⁺ reference	s '3
Figure VI - 197:	Transmission electron microscopy images of 0.5Li ₂ MnO ₃ •0.5LiCoO ₂ annealed at 850°C followed by (a) slow cooling and (b) quenching	4
Figure VI - 198:	(Top) AFM image and (bottom) X-ray reflectivity data of LiMn ₂ O ₄ /TiN/MgO(001) films grown by RF-sputtering. The LMO film is crystallographically aligned with the substrate, but is rougher than optimal	4
Figure VI - 199:	In situ XRD pattern combined with simultaneously measured mass spectroscopy (MS) data that trace oxygen gas release of fully charged disordered LNMO during heating up to 370°C	8
Figure VI - 200:	In situ XRD pattern combined with simultaneously measured mass spectroscopy (MS) data that trace oxygen gas release of fully charged ordered LNMO during heating up to 370°C	8
Figure VI - 201:	<i>In situ</i> Ni K-edge XANES spectra of fully charged a) <i>d</i> -LNMO and b) <i>o</i> -LNMO during heating up to 370°C. Insets show the detailed feature of pre-edge region. c) Variations of the Ni-K edge positions (defined as the energy at half height of the energy step at main edge)	3 8

Figure VI - 202:	: In situ Mn K-edge XANES spectra of fully charged a) d-LNMO and b) o-LNMO during heating up to 370°C. Insets show the detailed feature of pre-edge region. c) Variations of the Mn-K edge positions (defined as the energy at half height of the energy step at main edge)	579
Figure VI - 203:	Si K-edge XANES spectra of Si anode at different states of lithiation and delithiation	579
Figure VI - 204:	Comparison of the cyclic voltammetry for the powder microelectrode of the same carbon material in Li ₂ O ₂ saturated PC/ACN electrolyte and supporting electrolyte (0.5 M LiPF ₆), PC/ACN electrolyte containing only TPFPB and supporting electrolyte (0.5 M LiPF ₆) and Li ₂ O ₂ saturated PC/ACN solution with 0.5 wt% TPFPB. Scan rate: 1mV/sec.	580
Figure VI - 205:	: Mechanism for the catalyzed superoxide disproportionation	580
Figure VI - 206:	: SEM images (left) (courtesy of Guoying Chen, LBNL), Electrochemical data (right-top), corresponding integra fluorescence intensity (right-bottom) of LiNi0.5Mn1.5O4 baseline (black), <112> platelet (green) and <111> octahedron (blue) particles in EC:DEC 1:2 1M LiPF6	ted 583
Figure VI - 207:	: Ultrafast LIBS emission intensity from the Si electrode/organic electrolyte system as a function of wavelength the (a) 580-685nm and (b) 180-270 nm spectral region	in 584
Figure VI - 208:	: Ex situ near-field IR and topography images of the SEI layer on Sn at 0.8V (top) and Li _x Sn at 0.1V (bottom)	584
Figure VI - 209:	A) Bright-field TEM image of natural graphite anode between two electron transparent SiN membranes within electrochemical cell. B) Extracted frame-shot of the same region showing SEI growth	the 588
Figure VI - 210:	: <i>In situ</i> observations of dendrite nucleation and growth from a gold working electrode in a 1M LiPF ₆ EC:DMC electrolyte	588
Figure VI - 211:	: In situ observations of dendrite nucleation and growth from a gold working electrode in a 1M LiPF ₆ EC:DMC electrolyte	589
Figure VI - 212:	: (a) Comparison of the starting fresh state and lithiated state of the SCP anode and plot of the measured areas the anode in the TEM image acquired at different times (b) Comparison of the volume expansion of the whole electrode, functional composite, and single NP. The inset drawing in panel (b) shows structure changes of the single Si-NP during the lithiation process.	s of ; ; ; ; ; ; ; ; ;
Figure VI - 213:	 (a) Bright-field image showing lattice fringes in this region. (b) Z-contrast image showing the destroyed electro structure (the inset shows a magnified view of the region within the red rectangle. 2D map and EELS spectra the core edges of O K, Mn L, and Ni L by EELS line scan from (c) fragmented piece and (d) cycled bulk. (e) Comparison of the O-K, Mn-L, and Ni-L edges of the fragmented piece, and the cycled bulk and pristine materials. 	ode of 592
Figure VI - 214.	Direct correlation of capacity fading of the Li[Li _{0.2} Ni _{0.2} M _{0.6}]O ₂ cathode with the Ni distribution. (a) Specific capa as a function of cycle numbers for Li[Li _{0.2} Ni _{0.2} M _{0.6}]O ₂ prepared by three different methods. (b) Schematic draw showing the newly developed 4-detector system in a TEM, which enables efficient collection of the EDS signa (c) EDS mapping showing Ni segregation in Li[Li _{0.2} Ni _{0.2} M _{0.6}]O ₂ prepared by different methods. The work is don in collaboration with FEI Company in Hillsboro, Oregon	icity ring al. ne 593
Figure VI - 215:	23Na MAS NMR spectra of the NaxNix/2Mn1-x/2O2 series. All the samples were prepared at 900°C unless noted	596
Figure VI - 216:	: <i>In situ</i> 7Li static NMR spectra for the first cycle of an Li1.08Mn1.92O4 vs. Li/Li+ bag cell. (a) Voltage profiles a Li1.08Mn1.92O4 isotropic shifts vs. capacity plots. (b) Stacked plot of the 7Li spectra. The <i>in situ</i> cell was cyc galvanostatically with a C/50 rate between 3.0 and 4.5 V during the spectral acquisition. Note the increase of intensity following 50% Li extraction (at the end of the 1st process) consistent with cation ordering	and led 596
Figure VI - 217:	: (Left) Voltage vs. time trace of an operando XRD cell with Li metal and NCM333 electrodes. (Right) Selected patterns taken during operation of the cell	600
Figure VI - 218:	: (Top) Ni K edge -XAS of the cross-section of a NMC333 electrode charged to 4.3 V at 3C. (Bottom) Zoom-in the top image, indicating the points where individual full spectra were collected (right)	of 600
Figure VI - 219:	: Operando XRD data of a Li metal cell with a KFeF3 working electrode	601
Figure VI - 220:	: Cyclability of Li/Se-C system showing more than 300 mAhg ⁻¹ as capacity	603
Figure VI - 221:	: Voltage profile of Li/Se-C system	604

Figure VI - 222	PDFs for the pristine Se-C electrode and upon recovery from various states of discharge/charge. Structural representations of the Se and Li ₂ Se (antifluorite) phases are shown at top
Figure VI - 223	Representation of cathode phase evolution during charge and discharge of a Li/Se cell with an ether-based electrolyte
Figure VI - 224	(a) Normalized XANES spectra of Li/Se cell during cycling, (b) battery voltage profile, and (c) derivative of normalized XANES spectra of Li/Se cell during cycling
Figure VI - 225	Cycle performance of Li/Se cell in ether-based electrolyte
Figure VI - 226	XPS spectra of Li 1s and C 1s core peaks of the cathode carbon electrodes after discharge and charge when using PC or 1NM3 as solvent in the electrolyte
Figure VI - 227	First charge and discharge cycles or a Li-air cell with propylene carbonate (PC) as and polylethylene oxide siloxane (1NM3) showing the reduced charge overpotential due to the stability of 1NM3 to oxygen reduction products
Figure VI - 228	Schematic of the nanostructured cathode architecture shows the Al ₂ O ₃ coating, the palladium nanoparticles and the nanocrystalline lithium peroxide, all of which contribute to lowering the overpotential. The inset shows a hypothetical charge/discharge voltage profile vs. capacity
Figure VI - 229	HRTEM of the cathode structure: (a) pristine Super P carbon (scale bar, 2nm); (b) carbon surface coated with 3 ALD cycles of Al ₂ O ₃ , (scale bar, 2nm); (c)-(f) carbon + 3 ALD cycles Al ₂ O ₃ + 3 ALD cycles Pd nanoparticles, (scale bar for (c)-(f), 5nm, 2nm, 4nm, and 2nm respectively)
Figure VI - 230	: (a) Voltage profile during discharge-charge of cells (to 1000 mAh/g) based on super P carbon; super P carbon coated with Al ₂ O ₃ ; and Al ₂ O ₃ coated super P carbon further coated with Pd nanoparticles. (b) Voltage profile during discharge-charge of cells (to 500 mAh/g) based on Al ₂ O ₃ coated super P carbon further coated with Pd nanoparticles. The electrolyte used is TEGDME-LiCF ₃ SO ₃
Figure VI - 231	Scheme 1 Possible reaction mechanisms of decomposition of ethers to form LiOH and alkyl carbonates at the anode surface upon electron attachment and oxygen crossover
Figure VI - 232	a) <i>In situ</i> XRD patterns of Li anode and LiOH formation during the operations conditions, and (b) corresponding voltage vs time profile. Numbers on XRD data correspond to those on voltage profile
Figure VI - 233	Ex situ FT-IR spectra of Li anode after 10 cycles and (b) HE-XRD patterns of the Li-anode after being cycled for 1 and 10 cycles. For the FT-IR spectra, we have included the standard Li metal, LiOH powder and TEGDME electrolyte for comparison
Figure VI - 234	SEM images of pellets sintered in fresh (top), 6h annealed (middle) 12h annealed (bottom) LLZO powder covers
Figure VI - 235	LIBS depth profiles (a, b, c) and cross-section imaging (a-1, a-2, b-1, b-2, c-1, and c-2) of Al/La (a, a-1, and a-2), Zr/La (b, b-1, and b-2) and Li/La atomic ratios (c, c-1, and c-2) of pellets made in fresh powder (middle column) and the powder annealed for 6h (right column)
Figure VI - 236	Total ionic conductivities of pellets prepared in fresh powders or those annealed for 6 h
Figure VI - 237	XPS spectra of (a) Ti in Ohara glass-ceramic and (b) Zr in thin film amorphous LLZO, before and after contact with lithium metal at 90 C
Figure VI - 238	27AI MAS NMR spectra of LLZO powders annealed at 850°C over time
Figure VI - 239	Particle morphology of pristine SLMP (top) and Au-Pd surface sputtered SLMP (bottom) analyzed by SEM 620
Figure VI - 240	Flow chart of application of SLMP to electrode including incorporation and activation of SLMP particle through electrode slurry-making process
Figure VI - 241	C-rate (left) and cycling performance (right) for the Li/graphite cell using SBR/toluene combination when the graphite is coated with 2% of PVDF
Figure VI - 242	Li/MCMB-SLMP half-cell cycling data (top) and LiMn ₂ O ₄ /MCMB-SLMP full cell voltage profiles (left, bottom) and capacity retention and coulombic efficiency (right, bottom)
Figure VI - 243	MCMB-SLMP electrode activated by compression method and new thermal treatment method
Figure VI - 244	The first voltage profiles of half-cells using MCMB-SLMP (2%) electrodes activated by thermal treatment at 180°C and 190°C

Figure VI - 246: Cycle performance for graphile/IMC full cells with (ref symbols) and without SLMP (refer and blue symbols) at C/3 rate. The cell without SLMP with strested at open circuit for four days before cycling. The cell without SLMP with formation (green symbols) was cycled at C/25 for five cycles, followed by C/10 for ten cycles, then cycled at C/3 rate. The cell without SLMP with the cycles of the cycles and the cycles. The cell without SLMP with cycles are cycled at C/3 after assembling. 623 Figure VI - 248: Ionic conductivity (right y-axis) and activation energy (left y-axis) as a function of the weight fraction of LLZO. 628 628 Figure VI - 248: Ionic conductivity (right y-axis) and activation energy (left y-axis) as a function of As concentration doped in LLSOS1. Ionic conductivity (right y-axis) and activation energy (left y-axis) as a function of As concentration doped in LLSOS1. Comparative Arrhenius plots for L15as3Nn.essAs.as.as As.as a function of the temperature	Figure VI - 245:	: (A) The first cycle voltage profiles for graphite half-cells with 1.2% wt SLMP (red line) and without SLMP (green line) at C/3 rate. The cell with SLMP was rested under open circuit for four days before cycling and the cell without SLMP was cycled at C/3 after assembling; (B) The cycle performance and coulombic efficiency for graphite half-cells with (green symbols) and without SLMP (blue and red symbols) at C/3 rate. The cell without SLMP with formation (blue symbols) was cycled at C/25 for two cycles, followed by C/10 for five cycles, then cycled at C/3 rate. The cell without SLMP without formation (red symbols) was cycled at C/3 rate. The cell without SLMP without formation (red symbols) was cycled at C/3 rate.	3
Figure VI - 247: Comparison of cycling performance of LPSP, LizS@LizPS₄ and LizS nanoparticles 627 Figure VI - 248: Ionic conductivity (right y-axis) and activation energy (left y-axis) as a function of the weight fraction of LLZO. 628 Figure VI - 250: Ionic conductivity (right y-axis) and activation energy (left y-axis) as a function of As concentration doped in LisSG4. 628 Figure VI - 251: Comparative Arrhenius plots for LissasSno.asAs. HesSa and β-LisPS4 before and after air exposure 629 Figure VI - 252: Area specific resistance for the interface between polymer and inorganic electrolytes. Values were determined from impedance of the bilayer compared to individual components as a function of the temperature 632 Figure VI - 253: Effective conductivity for 50 vol.% loading of randomly dispersion attributed to the grain boundary resistance 632 Figure VI - 254: Example of extended impedance scan showing dispersion attributed to the grain boundary resistance 633 Figure VI - 256: Conductivity of dispersed caramic polymer composite electrolyte compared to those of the pure and dense phases 633 Figure VI - 256: Li Columbic efficiency of LiPFe/EC-PC electrolytes 635 Figure VI - 258: Optical images of surface morphologies of hard carbon electrodes after 200% overcharging in the control electrolyte (a) and the electrolyte with 0.05 M CSPF6 as additive (b). 637 Figure VI - 258: Optical images of surface morphologies of hard carbon electrodes after 100% overcharging in (a) control electrolyte on hard carbon electrolyte with	Figure VI - 246:	Cycle performance for graphite/NMC full cells with (red symbols) and without SLMP (green and blue symbols) at C/3 rate. The cell with SLMP was rested at open circuit for four days before cycling. The cell without SLMP with formation (green symbols) was cycled at C/25 for five cycles, followed by C/10 for ten cycles, then cycled at C/3 rate. The cell without SLMP without formation (blue symbols) was cycled at C/3 for five cycles, followed by C/10 for ten cycles, then cycled at C/3 rate. The cell without SLMP without formation (blue symbols) was cycled at C/3 after assembling	t 3
 Figure VI - 248: Ionic conductivity (right y-axis) and activation energy (left y-axis) as a function of the weight fraction of LLZO. 628 Figure VI - 249: Photos of polymer mesh (left) and mesh enhanced β-LisPS4 membrane (right). The thickness of the membrane (28) Figure VI - 250: Ionic conductivity (right y-axis) and activation energy (left y-axis) as a function of As concentration doped in LisSnS4. Figure VI - 251: Comparative Arrhenius plots for Li3s3SN0.83SN0.	Figure VI - 247:	: Comparison of cycling performance of LPSP, Li ₂ S@Li ₃ PS4 and Li ₂ S nanoparticles	7
Figure VI - 249: Photos of polymer mesh (left) and mesh enhanced β-LisPS4 membrane (right). The thickness of the membrane is 100 µm. 628 Figure VI - 250: Ionic conductivity (right y-axis) and activation energy (left y-axis) as a function of As concentration doped in LisSnS4. 628 Figure VI - 251: Comparative Arrhenius plots for LissasSnoss3AS0.nesS4 and β-LipPS4 before and after air exposure. 629 Figure VI - 252: Area specific resistance for the interface between polymer and inorganic electrolytes. Values were determined from impedance of the bilayer compared to Individual components as a function of the temperature	Figure VI - 248:	lonic conductivity (right y-axis) and activation energy (left y-axis) as a function of the weight fraction of LLZO. 628	8
Figure VI - 250: lonic conductivity (right y-axis) and activation energy (left y-axis) as a function of As concentration doped in LisRs. 628 Figure VI - 251: Comparative Arrhenius plots for Lissss Sh0.833As0.16634 and β-LisPS4 before and after air exposure. 629 Figure VI - 252: Area specific resistance for the interface between polymer and inorganic electrolytes. Values were determined from impedance of the bilayer compared to individual components as a function of the temperature 632 Figure VI - 253: Effective conductivity for 50 vol % loading of randomly dispersed LLZO particles in a polymer matrix. Conductive necks are assumed to form at contacts between the ceramic particles. 632 Figure VI - 254: Example of extended impedance scan showing dispersion attributed to the grain boundary resistance. 633 Figure VI - 255: Conductivity of dispersed ceramic polymer composite electrolyte compared to those of the pure and dense phases. 633 Figure VI - 256: Scanning electron microscopy images of surface morphologies of hard carbon electrodes after 200% overcharging in the control electrolyte (a) and the electrolyte with 0.05 M CsPFs as additive (b)	Figure VI - 249:	: Photos of polymer mesh (left) and mesh enhanced β-Li₃PS₄ membrane (right). The thickness of the membrane is 100 µm	8
Figure VI - 251: Comparative Arrhenius plots for Li3x33S0.0x3As0.0x66A and β-Li3PS4 before and after air exposure	Figure VI - 250:	lonic conductivity (right y-axis) and activation energy (left y-axis) as a function of As concentration doped in Li4SnS4	8
Figure VI - 252: Area specific resistance for the interface between polymer and inorganic electrolytes. Values were determined from impedance of the bilayer compared to individual components as a function of the temperature	Figure VI - 251:	: Comparative Arrhenius plots for Li _{3.833} Sn _{0.833} As _{0.166} S ₄ and β-Li ₃ PS ₄ before and after air exposure	9
Figure VI - 253: Effective conductivity for 50 vol.% loading of randomly dispersed LLZO particles in a polymer matrix. Conductive necks are assumed to form at contacts between the ceramic particles. 632 Figure VI - 254: Example of extended impedance scan showing dispersion attributed to the grain boundary resistance 633 Figure VI - 255: Conductivity of dispersed ceramic polymer composite electrolyte compared to those of the pure and dense phases 633 Figure VI - 256: Li Columbic efficiency of LiPF#/EC-PC electrolytes 635 Figure VI - 257: Scanning electron microscopy images of surface morphologies of hard carbon electrodes after 200% overcharging in the control electrolyte (a) and the electrolyte with 0.05 M CsPF6 as additive (b) 637 Figure VI - 258: Optical images of surface morphologies of hard carbon electrodes after 100% overcharging in (a) control electrolyte of 1.0-M LiPF6 in PC and (b) the electrolyte with 0.05 M CsPF6. 637 Figure VI - 259: Rate capability (a) and long-term cycling stability (b) of electrolyte (1.0-M LiPF6 in EC/PC/EMC) with and without 0.05-M CsPF6. 637 Figure VI - 261: Morphology comparison of original S /C composites. a1-d1: Scanning electron microscope; a2-d2: Elemental mapping for sulfur in different carbon hosts; a3-d3: Transmission electrolyte. Numbers in the figure represent the solid-to-liquid ratio calculated from sulfur weight (in grams)/electrolyte. Numbers in the figure represent the solid-to-liquid ratio calculated from sulfur weight (in grams)/electrolyte. Numbers in the figure serves and the solid-to-liquid ratio calculated from sulfur weight (in grams)/electrolyte volume (in liters). The higher ratio in a)	Figure VI - 252:	Area specific resistance for the interface between polymer and inorganic electrolytes. Values were determined from impedance of the bilayer compared to individual components as a function of the temperature	2
 Figure VI - 254: Example of extended impedance scan showing dispersion attributed to the grain boundary resistance	Figure VI - 253:	Effective conductivity for 50 vol.% loading of randomly dispersed LLZO particles in a polymer matrix. Conductive necks are assumed to form at contacts between the ceramic particles) 2
Figure VI - 255: Conductivity of dispersed ceramic polymer composite electrolyte compared to those of the pure and dense phases. 633 Figure VI - 256: Li Columbic efficiency of LiPFe/EC-PC electrolytes 635 Figure VI - 257: Scanning electron microscopy images of surface morphologies of hard carbon electrodes after 200% overcharging in the control electrolyte (a) and the electrolyte with 0.05 M CsPF6 as additive (b) 637 Figure VI - 258: Cotical images of surface morphologies of hard carbon electrodes after 100% overcharging in (a) control electrolyte of 1.0-M LiPF6 in PC and (b) the electrolyte with 0.05-M CsPF6. 637 Figure VI - 259: Rate capability (a) and long-term cycling stability (b) of electrolyte (1.0-M LiPF6 in PC/PC/EMC) with and without 0.05-M CsPF6. 637 Figure VI - 260: Long-term cycling stability of Li LFP cells with electrolytes of 1.0-M LiPF6 in PC both with and without 0.05-M CsPF6. 637 Figure VI - 261: Morphology comparison of original S /C composites. a1-d1: Scanning electron microscope; a2-d2: Elemental mapping for sulfur in different carbon hosts; a3-d3: Transmission electron microscope (TEM) of these S/C composites. 640 Figure VI - 262: Comparison of the cycling stability of different S/C composites at (a) 0.5 C and (b) 0.2 C rates. 641 Figure VI - 263: a) Cycling stability of baseline S/KB cathodes in different amounts of electrolyte volume (in liters). The higher ratio in a) corresponds to a smaller amount of electrolyte added in the cell. b) SEM images of cycled sulfur cathodes and Li anodes harvested from different cells in a) 641	Figure VI - 254:	Example of extended impedance scan showing dispersion attributed to the grain boundary resistance	2
 Figure VI - 256: Li Columbic efficiency of LiPFs/EC-PC electrolytes	Figure VI - 255:	Conductivity of dispersed ceramic polymer composite electrolyte compared to those of the pure and dense phases	3
 Figure VI - 257: Scanning electron microscopy images of surface morphologies of hard carbon electrodes after 200% overcharging in the control electrolyte (a) and the electrolyte with 0.05 M CsPF₆ as additive (b)	Figure VI - 256:	Li Columbic efficiency of LiPF ₆ /EC-PC electrolytes63	5
 Figure VI - 258: Optical images of surface morphologies of hard carbon electrodes after 100% overcharging in (a) control electrolyte of 1.0-M LiPF₆ in PC and (b) the electrolyte with 0.05-M CsPF₆	Figure VI - 257:	Scanning electron microscopy images of surface morphologies of hard carbon electrodes after 200% overcharging in the control electrolyte (a) and the electrolyte with 0.05 M CsPF ₆ as additive (b)	7
Figure VI - 259: Rate capability (a) and long-term cycling stability (b) of electrolyte (1.0-M LiPF ₆ in EC/PC/EMC) with and without 0.05-M CsPF ₆ on hard carbon electrodes 637 Figure VI - 260: Long-term cycling stability of LiJLFP cells with electrolytes of 1.0-M LiPF ₆ in PC both with and without 0.05-M CsPF ₆ 637 Figure VI - 261: Morphology comparison of original S /C composites. a1-d1: Scanning electron microscope; a2-d2: Elemental mapping for sulfur in different carbon hosts; a3-d3: Transmission electron microscope (TEM) of these S/C composites 640 Figure VI - 262: Comparison of the cycling stability of different S/C composites at (a) 0.5 C and (b) 0.2 C rates 641 Figure VI - 263: a) Cycling stability of baseline S/KB cathodes in different amounts of electrolyte. Numbers in the figure represent the solid-to-liquid ratio calculated from sulfur weight (in grams)/electrolyte volume (in liters). The higher ratio in a) corresponds to a smaller amount of electrolyte added in the cell. b) SEM images of cycled sulfur cathodes and Li anodes harvested from different cells in a) 641 Figure VI - 264. Comparison of cycling stability with and without ionic liquid (IL) as the co-solvent. The insets compare the surface and cross sectional images of Li metal cycled in (a1, a2) the baseline electrolyte and (b1, b2) in the presence of IL-co-solvent. 642 Figure VI - 265: a) Comparison of as-coated thick sulfur electrodes before and after modification. b) Cycling performance of thick sulfur cathode. 0.1 C was used for the first two cycles, followed by 0.2 C in subsequent cycling (1 C = 1000 mA/g). 642 Figure VI - 266. XRD of reaction products of polymer wi	Figure VI - 258:	: Optical images of surface morphologies of hard carbon electrodes after 100% overcharging in (a) control electrolyte of 1.0-M LiPF ₆ in PC and (b) the electrolyte with 0.05-M CsPF ₆	7
Figure VI - 260: Long-term cycling stability of Li LFP cells with electrolytes of 1.0-M LiPF ₆ in PC both with and without 0.05-M 637 Figure VI - 261: Morphology comparison of original S /C composites. a1-d1: Scanning electron microscope; a2-d2: Elemental mapping for sulfur in different carbon hosts; a3-d3: Transmission electron microscope (TEM) of these S/C composites. 640 Figure VI - 262: Comparison of the cycling stability of different S/C composites at (a) 0.5 C and (b) 0.2 C rates. 641 Figure VI - 263: a) Cycling stability of baseline S/KB cathodes in different amounts of electrolyte. Numbers in the figure represent the solid-to-liquid ratio calculated from sulfur weight (in grams)/electrolyte volume (in liters). The higher ratio in a) corresponds to a smaller amount of electrolyte added in the cell. b) SEM images of cycled sulfur cathodes and Li anodes harvested from different cells in a) 641 Figure VI - 264. Comparison of cycling stability with and without ionic liquid (IL) as the co-solvent. The insets compare the surface and cross sectional images of Li metal cycled in (a1, a2) the baseline electrolyte and (b1, b2) in the presence of IL-co-solvent. 642 Figure VI - 265: a) Comparison of as-coated thick sulfur electrodes before and after modification. b) Cycling performance of thick sulfur cathode. 0.1 C was used for the first two cycles, followed by 0.2 C in subsequent cycling (1 C = 1000 mA/g). 642 Figure VI - 266. XRD of reaction products of polymer with KO2 645	Figure VI - 259:	Rate capability (a) and long-term cycling stability (b) of electrolyte (1.0-M LiPF ₆ in EC/PC/EMC) with and without 0.05-M CsPF ₆ on hard carbon electrodes	: 7
 Figure VI - 261: Morphology comparison of original S /C composites. a1-d1: Scanning electron microscope; a2-d2: Elemental mapping for sulfur in different carbon hosts; a3-d3: Transmission electron microscope (TEM) of these S/C composites	Figure VI - 260:	Long-term cycling stability of Li LFP cells with electrolytes of 1.0-M LiPF ₆ in PC both with and without 0.05-M CsPF ₆	7
 Figure VI - 262: Comparison of the cycling stability of different S/C composites at (a) 0.5 C and (b) 0.2 C rates	Figure VI - 261:	Morphology comparison of original S /C composites. a1-d1: Scanning electron microscope; a2-d2: Elemental mapping for sulfur in different carbon hosts; a3-d3: Transmission electron microscope (TEM) of these S/C composites	0
 Figure VI - 263: a) Cycling stability of baseline S/KB cathodes in different amounts of electrolyte. Numbers in the figure represent the solid-to-liquid ratio calculated from sulfur weight (in grams)/electrolyte volume (in liters). The higher ratio in a) corresponds to a smaller amount of electrolyte added in the cell. b) SEM images of cycled sulfur cathodes and Li anodes harvested from different cells in a)	Figure VI - 262:	Comparison of the cycling stability of different S/C composites at (a) 0.5 C and (b) 0.2 C rates	1
 Figure VI - 264. Comparison of cycling stability with and without ionic liquid (IL) as the co-solvent. The insets compare the surface and cross sectional images of Li metal cycled in (a1, a2) the baseline electrolyte and (b1, b2) in the presence of IL-co-solvent	Figure VI - 263:	a) Cycling stability of baseline S/KB cathodes in different amounts of electrolyte. Numbers in the figure represent the solid-to-liquid ratio calculated from sulfur weight (in grams)/electrolyte volume (in liters). The higher ratio in a corresponds to a smaller amount of electrolyte added in the cell. b) SEM images of cycled sulfur cathodes and L anodes harvested from different cells in a)	t) .i 1
Figure VI - 265: a) Comparison of as-coated thick sulfur electrodes before and after modification. b) Cycling performance of thick sulfur cathode. 0.1 C was used for the first two cycles, followed by 0.2 C in subsequent cycling (1 C = 1000 mA/g)	Figure VI - 264.	Comparison of cycling stability with and without ionic liquid (IL) as the co-solvent. The insets compare the surface and cross sectional images of Li metal cycled in (a1, a2) the baseline electrolyte and (b1, b2) in the presence of IL-co-solvent	2
Figure VI - 266. XRD of reaction products of polymer with KO ₂	Figure VI - 265:	a) Comparison of as-coated thick sulfur electrodes before and after modification. b) Cycling performance of thick sulfur cathode. 0.1 C was used for the first two cycles, followed by 0.2 C in subsequent cycling (1 C = 1000 mA/a)	۲ ۲
	Figure VI - 266.	. XRD of reaction products of polymer with KO ₂	5

Figure VI - 267 Figure VI - 268 Figure VI - 269 Figure VI - 270	 XPS spectra of the reaction products and pure polymers after ball milling with KO₂ and Li₂O₂
Figure VI - 271	: a) XRD spectra of CNTs and CNTs/Ru composite; b) cycling performance of CNTs/Ru electrode in Li-O ₂ battery 648
Figure VI - 272	I: (a) Example of equilibrium structure of Li ₂ S ₈ dissolved in tetraglyme from classical molecular dynamics simulations showing nano-aggregation. (b) Free energy <i>ab initio</i> molecular dynamics simulations of the association of 2 Li ₂ S ₈ molecules in tetraglyme. This study reveals a 10.4 kcal/mol barrier for nano-agglomeration of Li ₂ S ₈
Figure VI - 273	: Li ₂ S ₈ XAS Sulfur K-edge spectra from (a) experimental measurements (b) theoretical calculations of the isolated molecule in tetraglyme (c) theoretical calculations of the amorphous solid as a model of the nano-agglomerates. The pre-edge 'a' and main edge 'b' peak are labeled
Figure VI - 274	: XAS sulfur K-edge spectra of Li ₂ S _x dissolved in: (a) SEO, and (b) PEO651
Figure VI - 275	: Theoretical Li ₂ S _x spectra of Li ₂ S _x amorphous solids652
Figure VI - 276	: Ternary diagram of individual PCA/ITFA generated spectra weightings needed to recreate experimental Li ₂ S _x spectra
Figure VI - 277	: Li-S battery specific charge (full symbol) and discharge (open symbol) capacities at 90°C as a function of the cycle number. The efficiency for each cycle is indicated on the right Y-axis. The electrolyte and the cathode are made of SEO/LiTFSI(r=0.05)/LiNO ₃ (r=0.025) and Li ₂ S ₈ /SEO-LITFSI/Carbone (70/25/15 _{wt} %), respectively 652
Figure VI - 278	: A 68-72 membrane
Figure VI - 279	: Charge/discharge voltage curves of Li PEO/Al ₂ O ₃ 6-Bromohexyl ferrocene catholyte cell. Base electrolyte is 1M LiTFSI in EC/DEC (1/1)
Figure VI - 280	: SEM image of a PEDOT:PSS-coated polypropylene separator and its electrochemical cycle performance of a Li/PVDF-HFP PEO/Al ₂ O ₃ (2/1) PEDOT:PSS/PP 6-bromohexyl ferrocene cell. Base electrolyte is 1M LiTFSI in EC/DEC (1/1) and the spectator molecule in anolyte is PEGDME (M.W. 500)

LIST OF TABLES

Table II - 1: EV Everywhere energy storage targets for 2022	12
Table II - 2: CEFs for different cathodes—irreversible factor accounts for the irreversible loss of the matched active materials	15
Table II - 3: Comparison of 6 cathode materials with the same composition: ① SEM (8000x), ② D10/D50/D90 (μm), ③ tag density (g/cc), ④ initial discharge capacity at C/20 (mAh/g)	р 16
Table II - 4: Progress in Si Anodes	18
Table III - 1: Summary of USABC performance targets for EV batteries	26
Table III - 2: Summary of USABC performance targets for PHEV batteries	27
Table III - 3: Summary of USABC performance targets for power assist hybrid electric vehicles	28
Table III - 4: Summary of USABC targets for the system being developed	35
Table III - 5: Summary of abuse test results for LMO-free E400	37
Table III - 6: Version parameters and base & mid-program performance	40
Table III - 7: 2013 Q3 gap analysis	52
Table III - 8: Electrolyte formulation test matrix	54

Table III - 9: A summary of 18650 cells shipped for abuse testing	62
Table III - 10: Characteristics of HCC by various synthesis methods.	68
Table III - 11: In plant - processable high loading electrode study for high energy cell design	72
Table III - 12: SiNANOde Cell Self discharge	73
Table III - 13: Cathode Energy Factor comparison of different cathodes when matched to graphite or a Si composite	76
Table III - 14: 3Ah / 15Ah baseline cell design	90
Table III - 15: AC impedance analysis results of Si/C and Si/CNT/C nanofiber anodes	105
Table IV - 1: Design of experiments for thermal analyses 126	
Table IV - 2: Comparison of element values to cathode price	147
Table IV - 3. Steps and progress in the collaborative testing effort	155
Table IV - 4: Test group for cell string-level study	159
Table IV - 5: String combinations for rapid impedance measurements	159
Table IV - 6: Sanyo SA performance summary from DOD study	160
Table IV - 7: Testing activities under the USABC Program	164
Table IV - 8: Testing activities under the Benchmark Program	164
Table IV - 9: Testing activities under the FOA-2011 Program	165
Table IV - 10: Testing activities under the FOA-ARRA Program	165
Table IV - 11: Anticipated testing activities for FY14	165
Table IV - 12: ARC Results for the COTS NMC Cells	172
Table IV - 13: Results from Type 4 ISC implantation in 10 E-One Moli 18650 cells	185
Table IV - 14: Results from Type 2 ISC implantation in 10 E-One Moli 18650 cells	186
Table IV - 15: A list of lithium-ion cells used in testing the CD-adapco model	207
Table IV - 16: Particle-domain model parameters	215
Table V - 1: Comparison of bench-scale and scaled-up carbonate and hydroxide cathode materials for 1 st candidate 227	
Table V - 2: Comparison of 6 cathode materials with same composition: ① SEM (8000x), ② D ₁₀ /D ₅₀ /D ₉₀ (μm), ③ tap density (g/cc), ④ initial discharge capacity at C/20 (mAh/g)	y 232
Table V - 3: Pouch cell builds for electrolyte additive study using Gen2 electrolyte—1.2 M LiPF ₆ in EC:EMC (3:7 by wt)	250
Table V - 4: Electrochemical performance of CMC/SBR aqueous-based graphite anode compared to PVDF/NMP-based grap anode in initial characterization cycling tests. Electrodes were made on large A-Pro coater in dry room	ohite 253
Table V - 5: Capacity and efficiency values automatically calculated for formation testing (data provided from 8 pouch cells; (B9A, "HE5050 LMR-NMC vs. A12 Graphite")	CFF- 254
Table V - 6: Expected discharge C-rates determined by the averaging of all the data with corresponding capacity values base on the rate study test results (data provided from 8 pouch cells; CFF-B9A, "HE5050 LMR-NMC vs. A12 Graphite")	ed 254
Table V - 7: Selected electrochemical model parameters for LMR-NMC electrode at indicated electrode potential and half-cy	cle 259
Table V - 8: Group numbers and compositions for the combinational type study	289
Table V - 9. The refined crystallographic parameters for pristing HE5050 oxide by taking a composite structure of trigonal an	d
monoclinic phases	308
Table V - 10: Cathode compositions used in this work	321
Table V - 11: Relative change in average voltage in baseline cells and in cells containing an electrolyte additive or a coated cathode	325
Table V - 12: ORNL BMF equipment list	372
Table V - 13: Electrode information	374
Table V - 14: Various binders screened in NMC 532 cathodes	383

Table V - 15: Expected errors that may originate during thickness measurement by the laser caliper system mounted on the ORNL slot-die coater	. 394
Table VI - 1: Summary of the performance of various electrolyte additives on LMR-NMC electrodes 433	
Table VI - 2: Density and Young's modulus of various Al ₂ O ₃	. 467
Table VI - 3: The percentage of Li, C, O and F in the SEI films in electrolytes. a) 1M LiPF ₆ in EC/DMC (1:2 in vol.); b) 1M LiPI EC/DMC (1:2 in vol.) with 10 wt% FEC; c) 1M LiClO ₄ in pure FEC	F₀ in . 492
Table VI - 4: First step for the reduction of FEC on Li-Si ₁₅ H ₁₆ cluster. (Structure 4, Figure VI - 117). Reaction energies (Ereac) and the energy barriers (E*) are in eV. Route refers to Figure VI - 117.	and . 505
Table VI - 5: First step for reaction of FEC-Li-Si ₁₅ H ₁₆ ⁻ . Reaction energies (E _{reac}) and energy barriers (E*) are in eV. Route refe to Figure VI - 117	ers . 505
Table VI - 6: Optimization of polymer functionalization conditions	. 533
Table VI - 7: Mixing Conditions	. 557
Table VI - 8: Electronic conductivity of laminates prepared by mixing conditions (in Table VI - 7)	. 557
Table VI - 9: Bilayer and activation energy of the interface resistance	. 631
Table VI - 10: Summary of average Li Coulombic efficiency in 1-M LiPF6-based electrolytes	. 635
Table VI - 11: Summary of average Li Coulombic efficiency in 1-M ether-based electrolytes	. 636
Table VI - 12: Summary of average Li Coulombic efficiency in carbonate-based electrolytes with different additives	. 636