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Outline

• Introduction:
─ rationale
─ recent developments in non-precious metal oxygen reduction 

reaction (ORR) catalysis( ) y

• Low-temperature Oxygen Reduction Reaction (ORR) catalysts 
(PPy-Co-C)

• Catalysts obtained by heat treatment of organic and transition-
metal precursors:
─ polyaniline-derived catalysts as a best combination of activitypolyaniline derived catalysts as a best combination of activity 

and stability
─ cyanamide-based catalysts
─ ORR activity vs. catalyst structure and composition 

• Summary
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The Catalyst Cost Challenge

Stack Cost - $26/kW

Analysis:Analysis:
• Scaled to high-volume production 

of 500,000 units/year 
• Assumed Pt cost of $1100/oz
Challenges:
• Platinum cost representing ~34% 

of total stack cost
• Catalyst durability in need of 

improvement

James et al., DTI, Inc., 2010 DOE Hydrogen 
Program Review, Washington, DC, June 9, 2010

Main strategies to address catalyst cost challenge:

g , g , , ,

• Reduction in the platinum group metal (PGM) content

• Improvements to Pt catalyst utilization and durability

• Pt alloy catalysts with comparable performance to Pt but costing less

N i l l i h i d f d d bili
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• Non-precious metal catalysts with improved performance and durability



Platinum Challenge

Grand challenge: High platinum cost, price volatility, and resource 
concentration in virtually one location in the world (South Africa)
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concentration in virtually one location in the world (South Africa)



Non-Precious Metal ORR Catalysts

• Catalysts derived from macrocycle precursors, e.g. metal porphyrins,
phthalocyanine, etc.
Jasinski, 1968; CWRU (Yeager, Savinell; 1980s-1990s); 3M, 2000s; UNM, 2000s;
Tokyo Tech, 2000s;

• Materials synthesized from non-aromatic precursors by heat treatment, e.g.
ammonia, cyanamide, ethylenediamine
INRS, 1990s-2000s; University of Calgary, 2000s; University of South Carolina et al.y g y y
2000s; Michigan State University, 2000s; LANL, 2000s

• Catalysts obtained via pyrolysis of aromatic precursors, including polymers
(phenantroline, polypyrrole, polyaniline, etc.)
INRS, 1990s-2000s; 3M, 2000s; LANL, 2000s

• Inorganic ORR catalysts obtained by high-temperature treatment, e.g.
oxides, oxynitrides, y
Yokohama National University et al., 2000s; Dalhousie University, 2000s

• Catalysts produced without heat treatment
MIT 2000 LANL 2000 D ih t 2000 I di I tit t f T h l 2000
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MIT, 2000s; LANL, 2000s; Daihatsu, 2000s; Indian Institute of Technology, 2000s



Non-Precious ORR Catalysis – Concept 1:  Metal Not Participating in ORR

Nallathambi et al J Power Sources 183 34 2008Nallathambi et al, J. Power Sources 183, 34, 2008 
Sidik et. al, J. Phys. Chem. B 110, 1787, 2006 Niwa et al, J. Power Sources, 187, 93, 2009 

Nanostr ct red carbon doped ith nitrogen (CN )
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Nanostructured carbon doped with nitrogen (CNx) 
often viewed as ORR active site



Non-Precious ORR Catalysis – Concept 2:  Metal Participating in ORR

Lefèvre et al, Science, 324, 71, 2009 

MeN4/C (Me: Co or Fe) species embedded in carbon 
micropores an alternative ORR active site concept
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micropores – an alternative ORR active site concept



Turnover Frequency of Various ORR Catalysts

ORR turnover frequency:                                    f (s-1)= i / (e N)
i current density (Acm-2) e electron charge (1 6 10-19 C) N active site density (cm-2)i – current density (Acm 2), e – electron charge (1.6 10 19 C), N – active site density (cm 2)
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Gasteiger and Markovic, Science 324, 48 2009



DOE-EERE-Funded Advanced Cathode Catalysts Project (2006-2010)

• Catalysts with ultra-low Pt content, e.g. non-precious-metal core 
catalysts; mixed-metal shells for higher ORR activity (Brookhaven 
National Laboratory, Radoslav Adzic, PI)

• Non precious metal catalysts obtained by high temperature• Non-precious metal catalysts obtained by high-temperature 
treatment of various precursors of carbon, nitrogen, and transition 
metals (Los Alamos National Laboratory)
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DOE Cathode Catalyst Performance Targets

• Platinum group metal loading: 0.2 mgPGM/cm2 (both electrodes)

• Activity of PGM catalysts:Activity of PGM catalysts: 

mass activity 0.44 A/mgPt at 0.90 ViR-free 

area specific activity 720 μA/cm2 at 0.90 ViR-free

• Activity of non-PGM catalysts (per catalyst volume):

> 130 A/cm3 at 0.80 ViR-free (2010); 300 A/cm3 at 0.80 ViR-free (2015)

• Durability with cycling: 5,000 hours at T ≤ 80ºC, 2,000 hours at T > 80ºC

• Electrochemical surface area (ESA) loss: < 40%;  Cost: < 5 $/kW
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Low-Temperature Non-Precious Metal Composites: Co-PPy-XC72

• Hypothesis: CoN2 (CoN4) sites claimed to act as ORR active sites 
( i l d C h i )(e.g. in pyrolyzed Co porphyrins)

• Objective: Generate ORR active sites without destroying the 
ordered structure of the polymer catalyst

• Approach: Heteroatomic polymer as a matrix for entrapping and• Approach: Heteroatomic polymer as a matrix for entrapping and 
stabilizing non-precious metal

• Choice: Cobalt-polypyrrole-carbon composite (Co-PPy-XC72)

Pyrrole + XC72

PPy-XC72

(i) C(i) Co precursor
(ii) reduction

Co-PPy-XC72
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Bashyam and Zelenay, Nature 443, 63, 2006



Co-PPy-XC72 Catalyst: Molecular Modeling

DO-O = 1.21 Å DO-O = 1.47 Å

+ 2H+ +  2e- →
dioxygen

DO-O = 1.56 Å DO-O = 1.99 Å

+  2e- →

[(tetrapyrrole) H2O Co-OH-HO-Co H2O (tetrapyrrole)]2-

Dioxygen interaction with two Co centers significantly weakening O-O bond 
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relative to the O2/H2O2 reference system



Low-Temperature Non-precious Metal Composites: Co-PPy-XC72
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Bashyam and Zelenay, Nature 443, 63, 2006

• Significant improvement in the stability over the state of the art

• ORR activity in dire need of improvement
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PolyanilineCyanamide Polypyrrole

High-Temperature Synthesis

NC

H

H

N

Transition metalCarbon support

First heat treatment at up to 
1100oC in inert atmosphere 

0.5 M H2SO4 leach at        
80-90oC

S

ORR f l ti

Second heat treatment at 
900ºC in inert atmosphere
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ORR performance evaluation; 
characterization



Polyaniline-Derived Catalysts
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Schematic Representation of Polyaniline-Derived Catalyst Synthesis

Metal Addition 
Polymerization

Adsorption

Heat Treatment

Acid leach
N

E 2nd Heat Treatment
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Final Catalyst

E 2 Heat Treatment 



PANI Catalysts: Evolution of ORR Activity and 4e- Selectivity (RRDE)

Rotating Ring Disk Electrode (RRDE) Data
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• Best-performing PANI-derived catalyst trailing Pt/C 
reference catalyst by no more than 80 mV at E½
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• H2O2 generation reduced to ~ 0.5%



Composite catalysts derived from heteroatomic organic precursors (e.g. 
polyaniline - PANI, transition metals, and carbon; heat-treated at 600ºC -

Nanostructure of PANI-Derived Catalysts: HR-TEM Images

1100ºC; and subjected to post-synthesis purification and activation steps

10 nm

500 nm

20 nm

500 nm

Onion-like filled and hollow turbostratic
carbon layers, disordered nanofiber and 
metal-containing nanoparticles visible after 
pyrolysis in PANI-derived catalyst
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PANI-Fe-C: Effect of Heat-Treatment Temperature on Activity and Speciation
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notable result from XPS analysis of 
the PANI-Fe-C catalyst

Temperature (ºC)
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Polymer Electrolyte Fuel Cell (PEFC)
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X-Ray Tomography: MEA Image
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Fuel Cell Testing of PANI-derived ORR Catalysts: Performance
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• Relative  performance observed in RDE experiments reproduced in fuel cell testing 
(except for relatively lower PANI-Fe-C performance, possibly due to limited stability)

• PANI-FeCo(3:1)-C showing the best activity
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Fuel Cell Testing of PANI-derived ORR Catalysts: Performance Stability
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• PANI-FeCo(3:1)-C showing the best combined activity/durability, never before observed 
with non-precious metal catalysts in fuel cell testing

• Co likely to responsible for improved activity, Fe for stability
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ORR ActivityORR Activity
vs.

Catalyst Structure and Composition
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PANI-FeCo(3:1)-KJ and PANI-Fe-MWNT: Final Catalysts

PANI-FeCo(3:1)-KJ: Three images, same spot

• The two most durable 
catalysts showing notable 
similarities in morphology

• Significant number layered 

0.1 μm

graphene “bubbles” formed 
in PANI-FeCo(3:1) and PANI-
Fe-MWNT (→), co-located 
with the Fe(Co)Sx

TEM HAADF-STEM SEM

regions/particles (→); 
MWNT still present (→)

• BF-STEM images of PANI-
Fe-MWNT showing graphitic 

PANI-Fe-MWNT: Three images, same spot

carbon particles that 
surround/encapsulate FeSx

• Relationship of graphene
sheets (e.g. their increased 

metal-rich 
phase

graphene

( g
hydrophobicity) to durability 
requiring further exploration

MWNT
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TEM SEMHAADF-STEM0.1 μm
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PANI-Fe-C XAS: Comments on Interpretation of Spectra

• Multi-component nature of samples rendering analysis 
of EXAFS region of Fe K-edge spectra virtually 
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PANI-Fe-C: Effect of Heat-Treatment on Activity and Fe Speciation
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PANI-Fe-C: Effect of Heat-Treatment Temperature on Surface Area and Pores

• Sample heat-treated at 900ºC exhibiting 
the highest BET surface area and 
micropore volume/surface areamicropore volume/surface area

• Clear correlation observed between mass 
activity and micropore surface area
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PCA: Correlation of Combined Characterization Data and Activity
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• Fe-N-type coordination, correlated with ORR activity and ORR-active 
samples (900°C, 850°C, 800°C), remaining a primary candidate for active site

• The most active, 900°C catalyst having the highest BET surface area, a 
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bimodal pore distribution, high initial content of Fe carbide, Fe in oxide-like 
coordination environment, and Fe in phthalocyanine-like coordination



Cyanamide-Fe-C Catalyst
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Cyanamide-Fe-C Catalyst: RRDE Performance
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• ~ 70 mV difference in E1/2 between CM-Fe-C catalyst and Pt 
reference catalyst (20 μgPt cm-2)
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Pt
• H2O2 generation: ~ 1%
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Cyanamide-Fe-C Catalyst: Performance
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Improved Version 1
April 2009 Version

• Version 1 achieved with change in carbon support and adjustment of precursor ratios

• Version 2 generated by including additional sulfur-containing precursor

0.39 A cm-2 – measured per MEA surface area at 0.80 V (iR-corrected)
60 A cm-3 – measured per electrode volume at 0.80 V (iR-corrected)
165 A cm-3 – extrapolated per electrode volume at 0.80 V (iR-corrected)

• CM Fe C to Pt performance ratio at 0 60 V (standard Pt loading of 0 2 mg/cm2): ~ 0 65
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• CM-Fe-C to Pt performance ratio at 0.60 V (standard Pt loading of 0.2 mg/cm2): ~ 0.65



Performance Summary: Non-PGM Catalysis Research at Los Alamos
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• Fuel cell performance improved by more than 100× since 2008

• DOE 2010 activity target of 130 A/cm3 at 0.80 V achieved
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• PANI-FeCo-C catalyst (possibly the most promising non-PGM catalysts to date):

Summary

PANI FeCo C catalyst (possibly the most promising non PGM catalysts to date):

(i) high activity
(ii) respectable performance durability
(iii) excellent selectivity for four electron reduction process

Gang Wu, Karren L. More, Christina M. Johnston, Piotr Zelenay
Science, 443-447, 332, 2011 

( ) y p

• Open cell voltage (OCV) of 1.04 V and volumetric ORR activity of 165 A/cm3
electrode

(after mass-transport correction) achieved with CM-Fe-C catalyst in fuel cell testing

• High durability demonstrated with PANI-based catalysts to potential holding at OCVHigh durability demonstrated with PANI based catalysts to potential holding at OCV 
and 0.4 V in fuel cell testing; much of the performance loss at 0.60 V recoverable with 
reduced humidity

• ORR activity of PANI-derived catalysts correlated to microporosity and Fe-N y y p y
coordination; improved durability linked to graphene sheet formation (results of 
advanced spectroscopic and microscopic characterization)

• Immediate future research:
(i) active ORR site determination
(ii) improvements to stability and activity
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Potential

Non-Precious Metal Oxygen Reduction Catalysts vs. Platinum

Catalyst
Potential

at 0.10 mA/cm2

(V vs. RHE) 

EDA-Co-C 0.81

PANI-Fe-C 0.94

PANI-Fe/
EDA-Co-C

0.96
EDA-Co-C

20 wt% Pt/C
(60 µg cm-2)

1.00 

• ORR activity: At least 40 mV needed, especially at low overpotential (η); 
low Tafel slope of help at higher η values

• Stability: In spite of a major progress, still not there yet (factor of ~10)Stability: In spite of a major progress, still not there yet (factor of 10)
• Selectivity: Sufficient with the best performing catalysts
• Novel electrode structures required to accommodate high non-precious 

catalyst volume and prevent O2 mass-transfer loss
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Raman Spectra: Carbon Black vs. PANI-derived Catalyst 

Raman spectra of (a) Ketjenblack support and (b) PANI Fe C

G PeakD Peak Distortion(a) (b)

Raman spectra of (a) Ketjenblack support and (b) PANI-Fe-C 
catalysts subject to the single and double heat-treatment at 900ºC
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Both the support and polymer-derived carbon 
contributing to the catalyst morphology

Fuel Cell Technologies Program Webinar – April 25, 2011 39



RDE: 0.6 mg cm-2; 0.5 M H2SO4; 900 rpm; Cycling:
50 mV/s, 0.0-1.0 V in 0.5 M N2-saturated H2SO4

Anode: 0.25 mg cm-2 Pt; Cathode: 2.0 mg cm-2 PANI-Fe-C; Membrane: NRE-212; 
Cell: 80°C; H2-O2 /1.0-1.0 bar; Cycling: 0.6-1.0 V, 50 mV/s, N2 at 100% RH 

PANI-Fe-C: More on Durability (Cycling)
A/
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2 )
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• Only ∼10 mV loss in E½ at RDE testing after 10,000 potential cycles at 60ºC 

• After 30,000 cycles in the fuel cell, performance increase observed with PANI-Fe-C 
cathode in a H -O cell at lower voltages than 0 65 V; ca 25% loss in current density

Potential (V vs RHE) Current Density (A/cm2)

cathode in a H2-O2 cell at lower voltages than 0.65 V; ca. 25% loss in current density 
observed at 0.80 V (kinetic range)

• Increase in mass-transport controlled performance in fuel cell experiments highlighting 
the need to understand changes in catalyst and/or ionomer structure, including porosity
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• ICP results showing 30-35% Fe lost after 7,000 cycles (0.40-1.0 V); by XAS, mostly FeS
removed, whereas most of the Fe in Fe-N4 coordination retained



Ox + e- ⇔ Red  kfwd = ks exp[-αF(E-Eº)/RT]
kbw = ks exp[(1-α)F(E-Eº)/RT]

0
0.4
0.8

A
)

Mechanistic Analysis of ORR Kinetic Data for PANI-Fe-C Catalyst

Red + O2 + H+ → Ox + (HO2) * rds (kchem - rate constant)

bw s p[( ) ( ) ]

(HO -)* + 3e- + 3H+ 2H O fast reaction
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-)* + 3e- + 3H+ → 2H2O fast reaction 
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log (i) = log(nFAΓk) + log{{exp[-αF(E-E )/RT]/
{exp[-αF(E-Eº)/RT] + (k/ks) + exp[(1-α)F(E-Eº)/RT]}}
Γ - surface concentration of mediator sites (Γ = Γred + Γox)
k = kchemCH+CO2; A - real catalyst surface area; 
n - number of electrons exchanged in ORR
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Average parameter values obtained:
α = 0.25; k/ks = 12.6; Eº = 0.662 V 
(Eº measured for the reversible surface system - 0.646 V)

Steady-state ORR

E vs. RHE (V)

• Variable Tafel slopes in RDE experiments unrelated to catalyst-layer porosity; ORR Tafel 
80-90 mV/decade at low overpotential

• Intrinsic catalytic properties of the PANI catalyst responsible for the Tafel plot curvature
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Intrinsic catalytic properties of the PANI catalyst responsible for the Tafel plot curvature
• ORR likely mediated by a fast red-ox system on the catalyst surface



Fe0

Fe metal

PANI-Fe-C XAS: XANES Iron Standards

Fe metal

Fe2+ compounds
Fe0
Fe2+ phthalocyanine (at right)
Fe NFe2N
Fe4N
FeSO4 anhydrous
FeSO4 7H2O
Fe II acetylacetonate
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iron(II) phthalocyanine

High degree of symmetry of 
Fe2+ square planarFerrocene (at right)

FeS
FeS2 
tris(2,2'-bipyridine) Iron(II) 

hexafluoro-phosphate (at right)

( )
(organometallic)

Fe2  square planar 
environment (e.g., Fe-pc) 
causing unique spectral 
feature near 7115 eV; 
inclusion of this standard 
required to fit data wellhexafluoro-phosphate (at right)

1,10-phenanthroline Iron(II) sulfate 
complex (at right)

Fe3+/2+ compounds
F O

q

Fe3O4

Activity of non-precious catalysts 
attributed by many groups to FeN4–
type or FeN type sites

tris(2,2'-bipyridine) 
1,10-phenanthroline 

iron(II) sulfate complex
(F N )
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type or FeN2+2–type sites iron(II) hexafluoro-
phosphate

(FeN6) 

(FeN6) 



PANI-Fe-C XAS: XANES Iron Standards

Fe3+ compounds
FeCl3  6H2O
Fe III acetylacetonate
Fe(NO3)3 9H2O 2 3 7 8 12 13 17 18-octaethyl-Fe2O3
Fe porphine (at right)
Fe3+ phthalocyanine (at right)
modified Fe+ porphine

(FeTPPS, below)

2,3,7,8,12,13,17,18-octaethyl-
21H,23H porphine iron(III) 

acetate (porphine)

(FeTPPS, below)

iron(III) phthalocyanine-4,4′,4′′,4′′′-
tetrasulfonic acid, compound with 

oxygen monosodium salt

5 10 15 20 t t ki (4 lf t h l) 21H 23H hi i (III) hl id
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5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine iron(III) chloride 
(FeTPPS)
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