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Outline

* Introduction:
— rationale
— recent developments in non-precious metal oxygen reduction
reaction (ORR) catalysis

- Low-temperature Oxygen Reduction Reaction (ORR) catalysts
(PPy-Co-C)

- Catalysts obtained by heat treatment of organic and transition-
metal precursors:

— polyaniline-derived catalysts as a best combination of activity
and stability

— cyanamide-based catalysts
— ORR activity vs. catalyst structure and composition

 Summary

+ Acknowledgements
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The Catalyst Cost Challenge

~» Los Alamos

Scaled to high-volume production
of 500,000 units/year

Assumed Pt cost of $1100/0z

Platinum cost representing ~34%
of total stack cost

Catalyst durability in need of
improvement

James et al., DT, Inc., 2010 DOE Hydrogen

Program Review, Washington, DC, June 9, 2010

Stack Cost - $26/kW

Coolant
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Main strategies to address catalyst cost challenge:
* Reduction in the platinum group metal (PGM) content
* Improvements to Pt catalyst utilization and durability

- Pt alloy catalysts with comparable performance to Pt but costing less

oved performance and dur ”
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Platinum Challenge
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Grand challenge: High platinum cost, price volatility, and resource
concentration in virtually one location in the world (South Africa)

+ Los Alamos
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Non-Precious Metal ORR Catalysts

« Catalysts derived from macrocycle precursors, e.g. metal porphyrins,
phthalocyanine, etc.

Jasinski, 1968; CWRU (Yeager, Savinell; 1980s-1990s); 3M, 2000s; UNM, 2000s;
Tokyo Tech, 2000s;

« Materials synthesized from non-aromatic precursors by heat treatment, e.g.
ammonia, cyanamide, ethylenediamine

INRS, 1990s-2000s; University of Calgary, 2000s; University of South Carolina et al.
2000s; Michigan State University, 2000s; LANL, 2000s

« Catalysts obtained via pyrolysis of aromatic precursors, including polymers
(phenantroline, polypyrrole, polyaniline, etc.)

INRS, 1990s-2000s; 3M, 2000s; LANL, 2000s

* Inorganic ORR catalysts obtained by high-temperature treatment, e.g.
oxides, oxynitrides

Yokohama National University et al., 2000s; Dalhousie University, 2000s
» Catalysts produced without heat treatment
MIT, 2000s; LANL, 2000s; Daihatsu, 2000s; Indian Institute of Technology, 2000s

> Los Alamos
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Non-Precious ORR Catalysis — Concept 1:

Metal Not Participating in ORR
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Niwa et al, J. Power Sources, 187, 93, 2009

Nanostructured carbon doped with nitrogen (CNXx)
often viewed as ORR active site
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Non-Precious ORR Catalysis — Concept 2: Metal Participating in ORR
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Lefevre et al, Science, 324, 71, 2009

MeN,/C (Me: Co or Fe) species embedded in carbon
micropores — an alternative ORR active site concept

Fuel Cell Technologies Program Webinar — April 25, 2011



Turnover Frequency of Various ORR Catalysts

ORR turnover frequency: f(sH)=i/(eN)
i — current density (Acm2), e — electron charge (1.6 10-1° C), N — active site density (cm2)

1';::.51',::-'

Large PtM nanoparticle

Gasteiger and Markovic, Science 324, 48 2009

+ Los Alamos
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DOE-EERE-Funded Advanced Cathode Catalysts Project (2006-2010)

- Catalysts with ultra-low Pt content, e.g. non-precious-metal core
catalysts; mixed-metal shells for higher ORR activity (Brookhaven
National Laboratory, Radoslav Adzic, Pl)

* Non-precious metal catalysts obtained by high-temperature
treatment of various precursors of carbon, nitrogen, and transition
metals (Los Alamos National Laboratory)

. Los Alamos
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DOE Cathode Catalyst Performance Targets

« Platinum group metal loading: 0.2 mgpg/cm? (both electrodes)
* Activity of PGM catalysts:
mass activity 0.44 A/mgp, at 0.90 V

iR-free

area specific activity 720 pA/cm? at 0.90 V,

R-free
* Activity of non-PGM catalysts (per catalyst volume):
> 130 A/cm?® at 0.80 V, (2010); 300 A/cm?3 at 0.80 V. (2015)

* Durability with cycling: 5,000 hours at T < 80°C, 2,000 hours at T > 80°C

R-free R-free

* Electrochemical surface area (ESA) loss: <40%; Cost: <5 $/kW

. Los Alamos
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Low-Temperature Non-Precious Metal Composites: Co-PPy-XC72

« Hypothesis: CoN, (CoN,) sites claimed to act as ORR active sites
(e.g. in pyrolyzed Co porphyrins)

» Objective: Generate ORR active sites without destroying the
ordered structure of the polymer catalyst

» Approach: Heteroatomic polymer as a matrix for entrapping and
stabilizing non-precious metal

» Choice: Cobalt-polypyrrole-carbon composite (Co-PPy-XC72)

Pyrrole + XC72 * P
. ~® e |
[ - : .
e o @ g "O.
PPy-XC72 ¢ ¢ g
: e g ¢
(i) Co precursor ¢ o ¢ :
(ii) reduction S o el
. e g
Co-PPy-XC72 ¢ .
L . N _ n
@ co 0sss+2)
Bashyam and Zelenay, Nature 443, 63, 2006

. Los Alamos
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Co-PPy-XC72 Catalyst: Molecular Modeling

Dao=1.21A Doo=1.47A
0-0 0-0 ‘Carbon ‘ Oxygen ‘ Cobalt

: + 2H+ + 26' —> 5:0 .Nitrogen ‘ Hydrogen

dioxygen

[(tetrapyrrole) H,O Co-OH-HO-Co H,0 (tetrapyrrole)]*

Dioxygen interaction with two Co centers significantly weakening O-O bond
relative to the O,/H,0, reference system

» Los Alamos
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Low-Temperature Non-precious Metal Composites: Co-PPy-XC72
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Bashyam and Zelenay, Nature 443, 63, 2006

* ORR activity in dire need of improvement

+ Significant improvement in the stability over the state of the art
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High-Temperature Synthesis

Cyanamide Polypyrrole Polyaniline
H
NEC_N/ No /N
N T O OO O

Carbon Support ................................. plhe e Transition metal

First heat treatment at up to
1100°C in inert atmosphere

0.5 M H,SO, leach at
80-90°C

Second heat- treatment at
900°C in inert atmosphere

ORR performance evaluation;
characterization

. Los Alamos
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Polyaniline-Derived Catalysts




Schematic Representation of Polyaniline-Derived Catalyst Synthesis

B .

Adsorption

7/ Metal Additio
Polymerization

e Polyaniline

o Carbon particle <« Oligomer

“Carbon shells doped with
nitrogen functionalities possibly
coordinated by metallic species

' encapsulated in graphite
onion-like carbon shells

reatment

» Los Alamos
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PANI Catalysts: Evolution of ORR Activity and 4e- Selectivity (RRDE)

Rotating Ring Disk Electrode (RRDE) Data
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- Best-performing PANI-derived catalyst trailing Pt/C
reference catalyst by no more than 80 mV atE,,

* H,0, generation reduced to ~0.5%

« Los Alamos

selectivity
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Nanostructure of PANI-Derived Catalysts: HR-TEM Images

Composite catalysts derived from heteroatomic organic precursors (e.g.
polyaniline - PANI, transition metals, and carbon; heat-treated at 600°C -
1100°C; and subjected to post-synthesis purification and activation steps

lrr;fu'r,, .

///////;

\\ ity

Onion-like filled and hollow turbostratic
carbon layers, disordered nanofiber and
metal-containing nanoparticles visible after
pyrolysis in PANI-derived catalyst

- Los Alamos ornl
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PANI-Fe-C: Effect of Heat-Treatment Temperature on Activity and Speciation
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Polymer Electrolyte Fuel Cell (PEFC)
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X-Ray Tomography: MEA Image

- Gas Gas
diffusion diffusion
B ',‘Iayer layer
o "

' Membrane

~double N 1135

¥ 'PANI-based
- I"IOH-DI"E‘CIOUS

-~

Pt anode (<15 um) whm precim

Nafion® Membrane

G000

5000
|

Image Data

4000

300 400 500

Distance in um

> Los Alamos
Fuel Cell Technologies Program Webinar — April 25, 2011

NATIONAL LABORATORY



Fuel Cell Testing of PANI-derived ORR Catalysts: Performance
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* PANI-FeCo(3:1)-C showing the best activity

* Relative performance observed in RDE experiments reproduced in fuel cell testing
(except for relatively lower PANI-Fe-C performance, possibly due to limited stability)

. Los Alamos
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Fuel Cell Testing of PANI-derived ORR Catalysts: Performance Stability
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* PANI-FeCo(3:1)-C showing the best combined activity/durability, never before observed

with non-precious metal catalysts in fuel cell testing

« Co likely to responsible for improved activity, Fe for stability

° Los Alamos
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ORR Activity

VS, AN
Catalyst Structure and Composition




PANI-FeCo(3:1)-KJ and PANI-Fe-MWNT: Final Catalysts

PANI-FeCo(3:1)-KJ: Three images, same spot

HAADF-STEM

« Los Alamos
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* The two most durable
catalysts showing notable
similarities in morphology

* Significant number layered
graphene “bubbles” formed
in PANI-FeCo(3:1) and PANI-
Fe-MWNT (—), co-located
with the Fe(Co)S,
regions/particles (—);
MWNT still present ()

* BF-STEM images of PANI-
Fe-MWNT showing graphitic
carbon particles that
surround/encapsulate FeS,

* Relationship of graphene
sheets (e.g. their increased
hydrophobicity) to durability
requiring further exploration

oml



PANI-Fe-C XAS: Comments on Interpretation of Spectra

Fe Metal/Fe Oxides Standards

norm mu(E)

« Multi-component nature of samples rendering analysis 16
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> Los Alamo

Argonne "

NATIONAL LABORATORY Fuel Cell Technologies Program Webinar — April 25, 2011




PANI-Fe-C: Effect of Heat-Treatment on Activity and Fe Speciation

Correlation between activity and
presence of Fe-N, -type coordination
observed; Fe-C, -type and Fe oxides

correlating to a lesser degree
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PANI-Fe-C: Effect of Heat-Treatment Temperature on Surface Area and Pores

300 ] 273
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PCA:

Correlation of Combined Characterization Data and Activity

Notes on Principle
Component Analysis

PCA

Samples and
variables with mean
composition,
activity, BET or pore
size would lie on the
intersection of axes
on this biplot.

The further the
variables or samples
from the intersection
in any direction
(vertical, horizontal
or diagonal), the
more different they
are from the average
values.

(As-synthesized
powders examined.)

PCA2 (32.99%)

0.4

0.3

Fe sulfide A
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Fe sulfate

Total Fe

900°C

Fe oxide
e(ll) phthalocyanine

0.4

Fe organometallic ORR ACtiVity*A
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1000°C QTotaI S “+ . J
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850°C g
i ®300°C
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ore size °® FeN
600°C 6
XANE
° 400°C —5— &
XPS R V'S
Amines
Heat-Treatment T Total O
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
PCA1 (36.01%)

* Fe-N-type coordination, correlated with ORR activity and ORR-active
samples (900°C, 850°C, 800°C), remaining a primary candidate for active site

* The most active, 900°C catalyst having the highest BET surface area, a
bimodal pore distribution, high initial content of Fe carbide, Fe in oxide-like
coordination environment, and Fe in phthalocyanine-like coordination

+ Los Alamos
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Cyanamide-Fe-C Catalyst




Cyanamide-Fe-C Catalyst: RRDE Performance
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« ~70 mV difference in E,;, between CM-Fe-C catalyst and Pt
reference catalyst (20 pgp; cm-2)
* H,0, generation: ~1%

« Los Alamos
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Cyanamide-Fe-C Catalyst: Performance

Cell Voltage (V)

-
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. Los Alamos
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* Version 1 achieved with change in carbon support and adjustment of precursor ratios

* Version 2 generated by including additional sulfur-containing precursor

0.39 Acm2 -
60 Acm-3 -
165 Acm3 -

measured per MEA surface area at 0.80 V (iR-corrected)
measured per electrode volume at 0.80 V (iR-corrected)
extrapolated per electrode volume at 0.80 V (iR-corrected)

CM-Fe-C to Pt performance ratio at 0.60 V (standard Pt loading of 0.2 mg/cm?): ~ 0.65

ATIONAL
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Performance Summary: Non-PGM Catalysis Research at Los Alamos

200
150 + DOE 2010 Target (130 Alcm®) 1
€ 100t ]
3 B measured (with mass-
o 50 - transport losses) -
& . [ mass transport loss-free 2
>-°5 T (Tafel extrapolation) T
o 12 .
o
e -
= 80°C, Po, = 1.0 bar
4 i
0 I I
2007 2008 2009 2010
Year

* Fuel cell performance improved by more than 100x since 2008

- DOE 2010 activity target of 130 A/cm3 at 0.80 V achieved

. Los Alamos
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Summary

* PANI-FeCo-C catalyst (possibly the most promising non-PGM catalysts to date):

(I) hlgh aCtIVIty Gang Wu, Karren L. More, Christina M. Johnston, Piotr Zelenay
(i) respectable performance durability Science, 443447, 332, 2011

(iif) excellent selectivity for four electron reduction process

+ Open cell voltage (OCV) of 1.04 V and volumetric ORR activity of 165 A/lcm3,.cirode
(after mass-transport correction) achieved with CM-Fe-C catalyst in fuel cell testing

« High durability demonstrated with PANI-based catalysts to potential holding at OCV
and 0.4 V in fuel cell testing; much of the performance loss at 0.60 V recoverable with
reduced humidity

* ORR activity of PANI-derived catalysts correlated to microporosity and Fe-N
coordination; improved durability linked to graphene sheet formation (results of
advanced spectroscopic and microscopic characterization)

 Immediate future research:

(i) active ORR site determination
(i) improvements to stability and activity

> Los Alamos
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Non-Precious Metal Oxygen Reduction Catalysts vs. Platinum

Potential
Catalyst at 0.10 mA/cm?
(V vs. RHE)
EDA-Co-C 0.81
PANI-Fe-C 0.94
PANI-Fe/
EDA-Co-C 0.96
20 wt% P
0 wt% Pt/C 1.00
(60 ug cm?)

* ORR activity: At least 40 mV needed, especially at low overpotential (n);
low Tafel slope of help at higher n values

- Stability: In spite of a major progress, still not there yet (factor of ~10)
« Selectivity: Sufficient with the best performing catalysts

* Novel electrode structures required to accommodate high non-precious
catalyst volume and prevent O, mass-transfer loss

. Los Alamos
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Raman Spectra: Carbon Black vs. PANI-derived Catalyst

Raman spectra of (a) Ketjenblack support and (b) PANI-Fe-C
catalysts subject to the single and double heat-treatment at 900°C

DPeak Distortion

As-received
Ketjenblack

Intensity (a.u.)

Ketjenblack, A

G Peak (b)

Intensity (a.u.)

Distortion
(C5-ring or
heteroatom)

G Peak

Raman shift (cm'1)
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Raman shift (cm'1)

Both the support and polymer-derived carbon
contributing to the catalyst morphology
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PANI-Fe-C: More on Durability (Cycling)

Current Density (mA/cmz)

-

RDE: 0.6 mg cm’?; 0.5 M H,SO,; 900 rpm; Cycling:
50 mV/s, 0.0-1.0 Vin 0.5 M N,-saturated H,SO,

Anode: 0.25 mg cm2 Pt; Cathode: 2.0 mg cm2 PANI-Fe-C; Membrane: NRE-212;
Cell: 80 C; H,-0,/1.0-1.0 bar; Cycling: 0.6-1.0 V, 50 mV/s, N, at 100% RH

0.9

Kineti‘c Range

0 - ! T 10 T T T T T
After cycling at 60°C After cycling at 80°C 08|
1L (aqueous electrolyte) 08 (fuel cell)
—~ 0.7
o | —*— 20 cycles Z 06| \
—eo— 500 cycles % 06
—e— 1K cycles S 1K cycles 0.0 0.1 0.2
-3 | —e— BK cycles ;3 041 . s cycles
10K CyCIeS —e— 10K CyCIeS
4 ¢ 0.2 |—e— gg:ﬁ gig:zz cycling increasing
—e— nitial
-5 : : : 0.0 : : : : :
0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Potential (V vs RHE) Current Density (A/cm?)
* Only ~10 mV loss in E,, at RDE testing after 10,000 potential cycles at 60°C
« After 30,000 cycles in the fuel cell, performance increase observed with PANI-Fe-C
cathode in a H,-O, cell at lower voltages than 0.65 V; ca. 25% loss in current density
observed at 0.80 V (kinetic range)
* Increase in mass-transport controlled performance in fuel cell experiments highlighting
the need to understand changes in catalyst and/or ionomer structure, including porosity
* ICP results showing 30-35% Fe lost after 7,000 cycles (0.40-1.0 V); by XAS, mostly FeS
removed, whereas most of the Fe in Fe-N, coordination retained
Los Alamos
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Mechanistic Analysis of ORR Kinetic Data for PANI-Fe-C Catalyst

08 T T T T
04 S N— -
< 0 B . N
£ - Background CV in argon 1
- .04 :7 \/—) :
0.8 L ‘ ‘ ‘ ‘ ‘ |
0 0.2 0.4 06 0.8 1 1.2
E (V) vs. RHE
2 3 1 1
<?E Loading
o o
< 2| - 0.7 mg cm
z /‘
‘®
c
[
(] 1| |
‘q:'; Loading
g 0.03 mg cm
o 0 | ]
L ,
@ ¥,
g J
5 1t 1 -
2 5
g Steady-state ORR
_2 | | | | |
0 0.2 0.4 0.6 0.8 1 1.2

E vs. RHE (V)

Ox + e < Red Keq = K, €Xp[-aF (E-E°)/RT]

Kow = Ks €xp[(1-a)F(E-E°)/RT]

v

Red + O, + H* - Ox + (HO,)*  rds (K e - rate constant)

v

(HO,)* + 3e- + 3H* — 2H,0 fast reaction

Fitting equation:

log (i) = log(nFATk) + log{{exp[-aF(E-E°)/RT]/
{exp[-aF(E-E°)/RT] + (k/k,) + exp[(1-a)F(E-E°)/RT]}}

[" - surface concentration of mediator sites (I' =4 + I',,)

K = KenemCrsCog; A - real catalyst surface area;
n - number of electrons exchanged in ORR

Average parameter values obtained:

a =0.25; k/k, = 12.6; E° = 0.662 V
(E® measured for the reversible surface system - 0.646 V)

« Variable Tafel slopes in RDE experiments unrelated to catalyst-layer porosity; ORR Tafel
80-90 mV/decade at low overpotential

* Intrinsic catalytic properties of the PANI catalyst responsible for the Tafel plot curvature
* ORR likely mediated by a fast red-ox system on the catalyst surface
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PANI-Fe-C XAS: XANES Iron Standards

Fe®
Fe metal

Fe?* compounds

Fe0

Fe?* phthalocyanine (at right)

Fe,N

Fe,N

FeSO, anhydrous

FeSO, 7H,0

Fe Il acetylacetonate

Ferrocene (at right)

FeS

FeS,

tris(2,2'-bipyridine) Iron(ll)
hexafluoro-phosphate (at right)

1,10-phenanthroline Iron(ll) sulfate
complex (at right)

Fe3*2* compounds
Fe,O,

Activity of non-precious catalysts

attributed by many groups to FeN,—

type or FeN,,,—type sites
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High degree of symmetry of
Fe?* square planar
environment (e.g., Fe-pc)
causing unique spectral
feature near 7115 eV,
inclusion of this standard
required to fit data well
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PANI-Fe-C XAS: XANES Iron Standards

HaC CHs, 0

J\o

Fe3* compounds HaC CHs
FeCl, 6H,0 o
Fe Ill acetylacetonate HaC 3
Fe(NO;); 9H,0
Fe(O a) 9, 2,3,7,8,12,13,17,18-octaethyl-
Fezpc::rphine (at right) HiC CHs 21H,23H porphine .iron(III)
Fe3* phthalocyanine (at right) acetate (porphine)
modified Fe* porphine

(FeTPPS, below)

_§0 iron(lll) phthalocyanine-4,4',4",4"'-
o ou  tetrasulfonic acid, compound with
2 oxygen monosodium salt

HO~

Q=n=0

5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine iron(lll) chloride
(FeTPPS)
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