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High Temperature Metals Overview 

 Focus of the program is characterization of Alloy 617 behavior and high 
temperature design methods for ASME Code qualification 

 ASME Task Group on Alloy 617 Qualification has been established 
– Two part activity 

• Subsection NB Below 427oC data nearly complete – fatigue design curve remaining to be determined 
• Subsection NH above 427oC significant ongoing elevated temperature testing  

 Support from NGNP Program, Small Modular Reactor Program and NEUP 
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Creep Curve for Alloy 617 at 800oC 
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Microstructure – TEM, 1000oC, 20 MPa 

e= 2% e= 10% e= 5% e= 20% 

• Minimal substructure development below 5% creep strain 

• Extensive substructure development at 10 and 20% creep strain 

• No porosity found during extensive examination of numerous samples 
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FEM Model Pressurized Tube 

 The model was axisymmetric, so only a half cross-section of the set-up is 
shown 

 The test tube is 12mmOD with 1 mm thick walls and 50 mm long  
 1000 psi internal applied pressure  
 950°C   
 Welds were not modeled 
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Comparison of Pressurized Tube to 
Uniaxial Creep 
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Optical Micrographs of Crept Tube 

6% strain  8% strain  
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Zener-Hollaman Plot for Creep of Alloy 
617 
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γ‘  Formation and Interaction in 
Creep in Alloy 617 

750°C and 145 MPa, ~10% creep strain, 2127 hrs TEM darkfield image 
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Uniaxial Creep Stress Drop Tests 
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Zener-Hollaman with Threshold Stress 
at 750oC 
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Larson-Miller Plot  Alloy 617 
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Coble Creep Nabarro Herring 
Creep 
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Alloy 617 Deformation Mechanism Map 
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Alloy 617 Creep-Fatigue 

 950°C Creep-Fatigue (CF) behavior 
 850°C C-F behavior 
 950°C C-F and creep behavior of welds 

 
 

Fatigue Creep-fatigue 
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C-F (Tensile-Hold) Failure Modes 

Figure from Miller, Hamm, Phillips, Materials 
Science and Engineering, vol. 53, p.234. 
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Alloy 617 950oC C-F 

0.3% total strain 

17 



850oC CF 
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Statistical Equivalence of New Tensile 
Yield Data 

No evidence to suggest a difference in the 
data sets 
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ASME Minimum Yield Strength 
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Comparison of Different Methods 
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Statistical Equivalence of New UTS Data 
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Comparison of Different Methods 
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Strain Rate Jump Tests, Alloy 617 

• Above 800°C the increments of stress associated with strain rate jumps 
 are of consistent magnitude 
• Serrated flow associated with dynamic strain aging occurs at lower 
 temperatures, but little strain rate sensitivity 
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Negative Strain Rate Sensitivity and 
Serrated Flow 

 Dynamic strain aging (serrated flow) results in negative strain rate 
sensitivity at lower temperatures 

 In this case the material exhibits strain rate weakening – the material in 
the neck is weaker than adjacent material and necking is exacerbated 

 Strain rate enhanced necking results in decreased elongation 
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Summary 
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• ASME Code qualification of Alloy 617 is moving forward 
first for NB and by FY 15 for NH 

• Preliminary fatigue design curve is under development 
• It has been demonstrated that γ’ can yield creep 

strengthening at 750oC 
• Creep-fatigue behavior undergoes a distinct transition 

between 850 and 950oC 
• Tensile properties for contemporary material compare well 

with historical data – although a new method of specifying 
minimum yield strength may be desirable 
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