Westinghouse Accident Tolerant Fuel Program

Peng Xu
Westinghouse Electric Company LLC
Columbia, SC
August 21, 2013

Overall Timeline

- 2012 to 2014
 - Planning overall Research & Development (R&D), licensing and business approach
 - Identification and evaluation of technical issues involved with achieving overall objectives
 - Describe test program to answer technical issues
 - Manufacture test specimens for experimental evaluations
- 2014 to 2016
 - Testing in Advanced Test Reactor (ATR), High Isotope Flux Reactor (HIFR) and Massachusetts Institute of Technology Reactor (MITR) to evaluate various technical approaches and pick optimum cladding and pellet designs
- 2016 to 2022
 - Interface with Nuclear Regulatory Commission (NRC) and technical groups to determine procedures, standards, etc. required for licensing
 - Long term test reactor testing of integrated cladding/pellet concept(s) to generate data for Lead Test Rod (LTR)/Lead Test Assembly (LTA) in 2022
 - Develop manufacturing technology for making economic manufacture of accident tolerant fuel designs

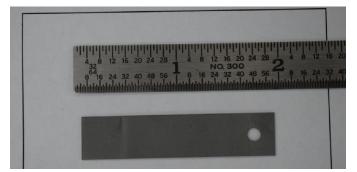
Technical Approach

Cladding

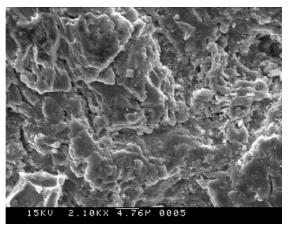
- Mid term Zr Alloy Coatings (Ti₂AlC and NanoSteel[®] SHS 9172) to provide major corrosion resistance increase (alleviating oxidation and hydriding degradation), moderate temperature (~200°C) resistance increase
- Long term SiC composites to provide major increases in maximum tolerable cladding temperature (up to 2000°C) and corrosion resistance

Fuel

- Mid term U₃Si₂ for 17% U235 increase and 5x increase in thermal conductivity
- Long term waterproofed U¹⁵N for up to 35% U235 increase (estimate) and 10x increase in thermal conductivity



Coating Work Update


- University of Wisconsin made cold spray Zr samples coated with Ti₂AlC and NanoSteel ™
- Edison Welding Institute (EWI) made hot sprayed samples of Ti₂AIC and NanoSteel ™
- Hot sprayed samples did not survive the 800°F steam autoclave test (3 day and 28 day). Cold spray samples survived
- Cold sprayed samples were tested at MIT in 1200°C steam for various times. No significant difference between uncoated or coated Zr alloy samples
- Conclusion is that the edges were not completely sprayed and that the coatings in general did not provide a significant barrier to O ion and/or steam diffusion
- Densification and pre-oxidation studies are being conducted to determine if diffusion can be significantly lowered

Ti₂AIC

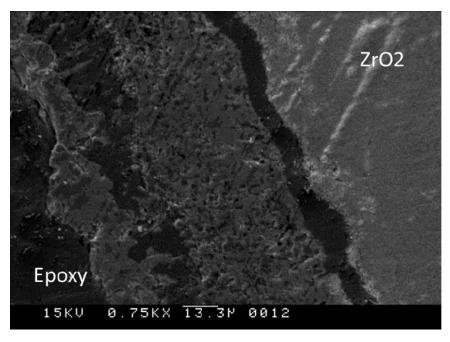
Pre Oxidation

206 µm

Cross section

SEM micrograph on the surface

Ti₂AIC After Exposure


1 hour in 1,200°C Steam

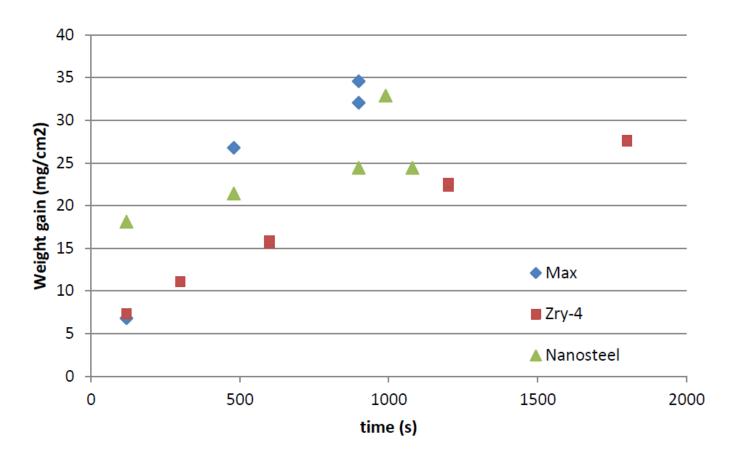
Characterization

15KV 075X 133P 0001

Cross section

Surface

Courtesy of MIT


NanoSteel ™ (0.28 hour in 1,200°C Steam)

Courtesy of MIT

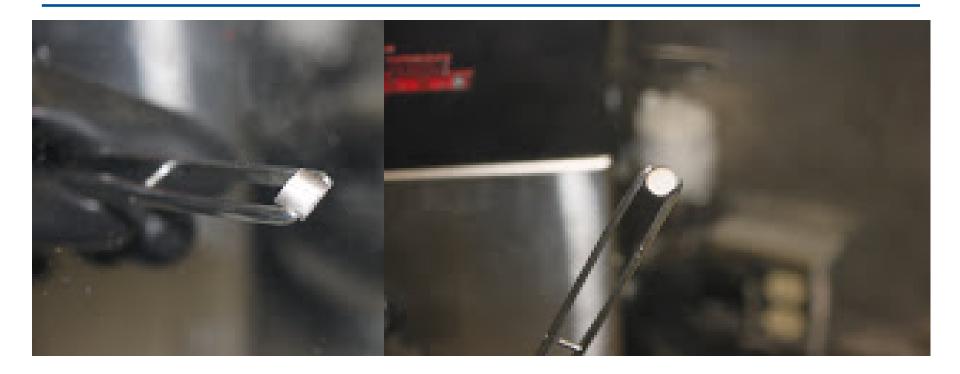
1200C Steam Test Results Summary

Courtesy of MIT

Task 2 R&D Needs (2014 to 2020) Study Completed

- Initial materials identification Phase 1 (2012 to 2016)
- Long term test reactor Phase 2 (2016 to 2022)
- LTR (2022) not included
- Total cost is ~\$48 million

	Dates	Estimated Costs	
Phase 1 Deveolpment + Phase 2 Testing	to 2016	\$	31.6
Phase 3 Test Reactor	2016 to 2020	\$	6.0
Phase 3 PIEs	2018 to 2022	\$	6.0
N15 Development Costs	2018 to 2022	\$	4.6
Total		\$	48.2



U₃Si₂ Powder Synthesis and Pellet Manufacture

- U₃Si₂ powder >98.5% pure phase has been made using arc-melting technique
 - No secondary uranium silicide phases (such as U₃Si or USi) visible using the SEM
 - No significant amounts of phases such as U, Si, UO₂, SiO₂ or other phases not related to arc melting or milling impurities were found.
- Pellets >94% Theoretical density have been made (objective is ~95.5%) using the conventional sintering technique and sintering for 1 hour at 1450°C

U₃Si₂ Pellets

Outreach

- Will share results of coating work with C³ program at University of Tennessee
- Paper will be presented at TopFuel 2013 (Preliminary Assessment Of The Performance Of SiC Based Accident Tolerant Fuel In Commercial LWR Systems, S. Ray, S. C. Johnson and E.J. Lahoda)
- Paper was presented at European Materials Research Society (EMRS) 2013 (Development of Nitride Fuel for LWR Applications, Peng Xu, Ed Lahoda, Lars Hallstadius, Andy Nelson, Ken McClellan, Sean McDeavitt)

Upcoming Tasks (9/30/2013)

- Task 3 Document and propose a clear path and plan for regulatory approval of the ATF concept
- Task 4 Develop a preliminary business plan that describes the investment and infrastructure needed to produce ATF on a commercial scale
- Interim Report

Westinghouse Accident Tolerant Fuel Program

Peng Xu
Westinghouse Electric Company LLC
Columbia, SC
August 21, 2013

