Scoping Study on Industrial Regulation

Nasr Alkadi, Ph.D.

Michael Starke, PhD

Oak Ridge National Laboratory

FY12 DOE–CERTS Transmission Reliability R&D at Lawrence Berkeley National Laboratory.

September 20, 2012

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Project objective: Scoping of Regulation Reserves in Industrial Sector

- 1. Develop an estimate of the amount of regulation that could reasonably be expected from <u>industrial loads</u> based on publicly available information.
- 2. Analyze the potential impact of regulation on the manufacturing process.

Major Technical Accomplishments:

Breakdown of Process Steps Ex1. Pulp Mills – SIC 2611

				Load Curve Classification (Class 1	Load Charactrization
ер	Pulp Mills (Kraft Process)	% T	otal Electricity	to 7)	
	1 Barker		3.404255319	3	Mechanical I (Cutting, Pressing, Mixing, Separating)
	2 Shredder and Bin	•	3.404255319	3	Mechanical I (Cutting, Pressing, Mixing, Separating)
	3 Chipper	•	6.382978723	3	Mechanical I (Cutting, Pressing, Mixing, Separating)
	4 Digester	•	0	0	NA
	5 Blow Tank	•	0	0	NA
	6 Washing and Filters	•	10.63829787	2	Mechanical II (Pumping - Moving - Transporting - Fans)
	7 Multiple Evaporators	•	0	0	NA
	8 Direct Contact Evaporators	•	0	0	NA
	9 Slaker and Causticizer	•	0	0	NA
	10 Kiln	•	0	0	NA
	11 Screening Knotting	•	21.27659574	3	Mechanical I (Cutting, Pressing, Mixing, Separating)
	12 Bleaching	•	17.0212766	2	Mechanical II (Pumping - Moving - Transporting - Fans)
	13 Washing	•	3.829787234	2	Mechanical II (Pumping - Moving - Transporting - Fans)
	14 Dewatering Pressing	•	25.53191489	3	Mechanical I (Cutting, Pressing, Mixing, Separating)
	15 Drying	•	8.510638298	2	Mechanical II (Pumping - Moving - Transporting - Fans)
	16 Boiler	•	0	0	NA
	17 Electric Generation	•	0	0	NA

Classifications consist of different weekday and weekend profiles (TYPE 3)

Major Technical Accomplishments:

Flexibility Analysis and Regulation Estimation

Ex2. Alkalie and Chlorine - SIC 2812, Cont.

Target known flexible systems:

- Variable speed driven equipment or machine drives
- Thermal energy and process and product storage (heating processes and cooling)

Process Steps

Description

- Direct current is supplied often through rectifier bridge to DC bus.
- The rectifier accounts for more than 90% of the total electrical load of the plant
- Control is available through tap-changers on transformers or other voltage regulating equipment.
- Pumps are also controlled to deliver saturated brine solution.

Deliverables and schedule for activities to be completed under FY12 funding

Objectives:

- Analyze the potential impact of regulation on the manufacturing process.
- 2) Look for potential demonstration cases.

Schedule:

- Develop detailed model for demonstration of impact of performing frequency regulation on a single manufacturing process as platform and demonstration to industry. (December 12')
- 2) Engage partners for demonstration (December 12')
- 3) Publication discussing modeling and example case (January 13')

Risk factors affecting timely completion of planned activities

- Detailed modeling makes assumptions of process control and flow. Assumptions and modeling made to higher estimates. This model will be adapted to a specific facility once partner have been identified. Utilizes industry based software (AnyLogic) for proof of principle.
- Industry based partners may be difficult to convince. A model will provide a more confidence discussion and impact on process.

Early thoughts on follow-on work that should be considered for funding in FY13

- Look at how industrial load can support renewable integration
- Experimental Work including Measurements in Selected MFG Plants
- Look at converting SICs to NAICS as soon as Bridge Data becomes available through EZ DB/EIA/MECS
- Build from work done by Kirby and Milligan "Utilizing Load Response for Wind and Solar Integration and Power System Reliability"

