Urea SCR Durability Assessment for Tier 2 Light-Duty Truck

2008 DEER Conference

Ed Badillo, Geoffrey Brohl, Giovanni Cavataio, <u>Douglas Dobson</u>, Gang Guo, Yinyan Huang, Christine Lambert, James Warner, Scott Williams

Ford Research and Innovation Center

Program Objectives

 Develop Tier 2/LEV II Urea SCR/DPF systems for chassis-certified, light-duty diesel trucks

	50k mi Standards				120k mi Standards					
[g/mi]	NO _x	PM	СО	NMOG	НСНО	NO _x	PM	СО	NMOG	НСНО
Tier 2 Bin 5	0.05		3.4	0.075	0.015	0.07	0.01	4.2	0.09	0.018
LEV II, ULEV	0.05		1.7	0.04	0.008	0.07	0.01	2.1	0.055	0.011
Tier 2 Bin 2						0.02	0.01	2.1	0.01	0.004
LEV II, SULEV						0.02	0.01	1.0	0.01	0.004

- Calibration of surrogate EU3 2.7L European LR3 diesel vehicles for US test cycles (FTP-75 and US06)
- Mileage accumulation up to 50,000 miles with periodic emission measurements

Exhaust System Configurations

DOC-SCR-CDPF System at 48k mi

DOC-SCRF Şystem at 46k mi

NMHC Results Summary

			NMHC Efficiency		
System	Supplier	Туре	4k	20-25k	40-50k
1	Α	DOC-SCR-CDPF	99.0%	99.1%	98.7%
2	В	DOC-SCR-CDPF	99.4%	99.1%	98.1%
3	В	DOC-SCRF	99.4%	98.9%	
4	Α	DOC-SCRF	99.1%	98.9%	98.2%

Note: Highest TP NMHC value for EU4 LR3 was ~0.03 g/mile on FTP (std 0.075)

CO Results Summary

			CO Efficiency		
System	Supplier	Type	4k	20-25k	40-50k
1	Α	DOC-SCR-CDPF	98.4%	98.5%	96.4%
2	В	DOC-SCR-CDPF	98.0%	97.1%	95.2%
3	В	DOC-SCRF	98.5%	98.4%	
4	Α	DOC-SCRF	97.7%	96.4%	95.8%

Note: Highest TP CO value for EU4 LR3 was 0.27 g/mile on FTP (std 3.4)

NO_x Results Summary

			NOx Efficiency		
System	Supplier	Type	4k	20-25k	40-50k
1	Α	DOC-SCR-CDPF	91%	90%	87%
2	В	DOC-SCR-CDPF	87%	86%	85%
3	В	DOC-SCRF	78%	73%	
4	Α	DOC-SCRF	88%	84%	80%

- Lower 4K NO_x efficiency of combined systems is attributed to washcoating on SCRF bricks @ only 60% of WCL on flow-through bricks.
- Best 50k emissions from EU4 vehicle was 0.057 g/mi.

PM Results Summary

			Filtration Efficiency			
System	Supplier	Туре	4k	20-25 k	40-50k	
1	Α	DOC-SCR-CDPF	99.7%	99.4%	34%	
2	В	DOC-SCR-CDPF	99.4%	N/A	74%	
3	В	DOC-SCRF	99.7%	91%		
4	Α	DOC-SCRF	99.8%	N/A	55%	

 Due to aggressive filter regeneration, some loss in filtration efficiency was experienced for both CDPF and SCRF systems

August 2008

DPF Development Issues

- LR3 fleet was launched with soot loading targets based on lower (~52%) porosity substrates.
 - MSL (maximum soot load) = up to 6.0 g/L.

- EU3 vehicles required aggressive EGR to meet PM targets.
 - Regeneration interval was roughly 350-400 miles.

Filter Post Mortem Results

System 1 CDPF at 48k mi

Filtration Efficiency: 74%

System 4 SCRF at 46k mi

Filtration Efficiency: 55%

System 4 SCRF at 46k mi

System 4 SCRF at 46k mi

Temperature (°C)

Majority of SCRF remained active for high NOx conversion

50k mi Aging Correlation

 On-Road 50k mi samples show similar FTP conversion performance as oven-aged 50k equivalent samples.

Potential for T2B2 Diesel

Advanced SCR Concept on LR3 surrogate vehicle

Conclusions

- DOC-SCR-CDPF systems were Tier 2 capable with little deterioration over 50k mi except for PM
- Robust filter regeneration critical for cordierite
- SCRF retained high NOx conversion despite loss in filtration efficiency
- SCRF systems require additional development to achieve full useful life (120,000 mile) T2B5 emissions