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Our multi-zone models have enabled
fast, high fidelity analysis of homogeneous (HCCI) combustion
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Unprecedented level of agreement obtained between
experimental (Sandia) and numerical (LLNL) results
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We are now modeling Sandia PCCI experiments
with KIVA3V-MZ-MPI

CA=-79 ISO-OCTANE concentration Red=High, Blue=Low

SOI =240 (-120) 280 (-80) 300 (-60)
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We are now modeling Sandia PCCI experiments
with KIVA3V-MZ-MPI

CA=-79 TEMPERATURE Red=Hot, Blue=Cold

SOI = 240 (-120) 280 (-80) 300 (-60)
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We have incorporated neural network chemical Kinetics into KIVA3V
for fast analysis of HCCI combustion and emissions (KIVA3V-ANN)
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The ignition integral criterion determines ignited cells
and a two step chemical Kinetic mechanism analyzes combustion
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Our artificial neural network engine combustion code (KIVA-ANN)
permits ultra fast and accurate modeling of iso-octane HCCI/PCCI
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KIVA-ANN is almost as accurate as detailed kinetic models
while considerably reducing computational cost (4 hours for 50,000 element mesh)



Our ANN has been trained over a broad range of ¢-EGR
enabling fast and accurate analysis of partially stratified combustion
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HCCI is more than a promising engine operating regime.
HCCl is also an excellent platform for developing & testing
high fidelity chemical kinetic models
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We develop & refine surrogate gasoline chemical Kinetic models

Surrogate fuel palette for gasoline

n-butane
n-pentane
n-hexane

n-heptane

Xylene
toluene

iso-pentanes
iso-hexanes
iso-octane

PO

methylcyclohexane

cyclohexane

pentenes
hexenes

by producing detailed mechanisms for all the major chemical classes
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We have proposed and tested three gasoline surrogate mechanisms

Mixture 1

% Molar Composition Mixture 2 | Mixture 3
iso-Octane 60 40 40
n-Heptane 8 10 20
Toluene 20 10 10
Methyl cyclohexane 8 40 30
1-Pentene 4 0 0
RON (linear) 92.9 82.2 74.5
MON (linear) 90.6 80.0 72.7
RON (blend) 96.3 92.9 825
MON (blend) 92.9 84.9 76.3

= Mixture 1: average gasoline
composition

= Mixture 2: similar octane
number as gasoline

= Mixture 3: enhanced reactivity
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Today’s detailed chemical Kinetic models perform well for iso-octane
but have limitations predicting low octane (n-heptane) fuel behavior
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We have identified improved chemical kinetic models of n-heptane
that can be further tuned with KIVA3V-MZ-MPI

Pressure, MPa
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In collaboration with LANL,
we have transitioned our multi-zone model to KIVA4
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We are analyzing gasoline SI-HCCI transition experiments
with a 1-D flame propagation/autoignition code
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Our model accurately predicts ORNL motored pressure traces
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We can also make accurate predictions of ORNL SI engine results
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Our analysis results also match ORNL HCCI results.
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Next challenge: model consecutive cycles to evaluate unstable
transition between HCCI and SI at intermediate EGR fractions
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Future plans: We will complete validation of our PCCI codes by
comparison with Sandia iso-octane results and exhaust speciation

1. KIVA3V with CHEMKIN calculations in
every cell: months in 100 processor
computer. For benchmarking only
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3. KIVA artificial neural network
(KIVA-ANN): 4 hours in single
processor computer
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2. KIVA multi-zone (KIVA3V-MZ-

MPI): I week in 100 processor
machine
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Summary: We continue to develop high fidelity HCCI and PCCI
analysis techniques with greatly improved computational efficiency

e Direct integration of KIVA and Chemkin

Years of computing time
in single processor computer

e Multi-zone KIVA-ChemKkin

Weeks of computing time
in single processor computer

™ Hours of computing time
in single processor computer l!l
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