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Diesel Engine Thermal Efficiency & Exhaust Waste Heat

LPL Engine
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Roughly half of the lost fuel energy is 
carried in the exhaust streams
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Challenges to Efficient Exhaust Waste Heat Recovery
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Program Objective

Develop components, technologies, and methods to recover energy 
lost in the exhaust processes

 
of an internal combustion engine and 

utilize that energy to improve engine thermal efficiency by 10% (i.e. 
from ~ 42% to ~46% thermal efficiency)

No increase in emissions 

No reduction in power density

Compatible with anticipated aftertreatment
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Phase 2 

20062005

Define
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2007 2008 2009

Phase 1 

Validate
roadmap

2010 2011

Phase 3 Phase 4
Refine Recipe Final System Demo

Phase 5

Mid-Program 
System Demo

We are here

Phase 3 Objective:  Demonstration of significant progress (+ 5-10%) in system thermal 
efficiency improvement via testing/analysis of prototype components.  This will include 
an on-engine system demonstration of prototype hardware.

Program Phases Per Contract

Program Timeline
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Program scope revised to include 
investigation of LPL & HPL 

solutions
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Technical Developments –
 

Proposed System
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Early in program:
•

 

2010 A/T backpressure levels not 
known with certainty
•

 

Turbocompound known to be 
negatively affected by backpressure

Forced consideration of 
“backpressure insensitive”
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Microchannel manufacturing technology

Concept design: 1.5 ft3

 

core vol.
Preliminary estimate: ~ 0.5 -
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Phase 2
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Even at 1 ft3

 

core volume, 
system packaging is challenge
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Technical Developments –
 

Stack Energy Recovery
Electric Turbocompound

Gen1 – Caterpillar / DOE 2001-2004 Development Program
–

 

Approach –

 

Turbocompound function integrated into engine turbo
–

 

Specification –

 

40kw @ 60krpm in generating mode

Measured Turbo Shaft Generator Power and Torque
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Results
•

 

Excellent stability of rotor / shaft system
•

 

Generated 44kw at 59krpm
–

 

Turbo generator short of efficiency target 
–

 

Heating problems –

 

powers above 15kw limited to 30-60sec runtime
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Technical Developments –
 

Stack Energy Recovery

Gen2 – Concept design collaboration with consultant
–

 

Specification:  20-25kw power generation
–

 

Two design options to be evaluated
•

 

‘Between-the-wheels’

 

option
•

 

‘In-front-of-compressor’

 

option
–

 

Thermal, stress, rotordynamic

 

analysis to evaluate options
–

 

Scheduled completion:  30Oct08
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Technical Developments –
 

HP Turbine
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Nozzled / Divided Turbine vs Production
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Nozzled / Divided Turbine vs Production
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Technical Developments –
 

HP Turbine
Mixed Flow Turbine

radial mixed flowradial mixed flow

Gen1 wheel designed / procured / tested

Gen1 missed target performance:
Over-aggressive design

–

 

Desire to clearly demo 
efficiency shift

First use of codes for mixed flow
–

 

Calibration required

MF Turbine vs 2007 Production HP
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Technical Developments –
 

HP Turbine

Gen2 wheel designed / analyzed
–

 

Gen1 lessons used to optimize design

Mixed Flow Turbine

Gen2Gen1
MF Turbine vs 2007 Production HP
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6-8% improvement in efficiency predicted vs

 

Gen1 over range of interest
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Assumptions:
–

 

Brayton

 

turbo efficiencies 80%
–

 

Single stage for packaging
–

 

Heat exchanger:  90% effectiveness
–

 

Transmission Efficiency: 90%

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

20.0 25.0 30.0 35.0 40.0 45.0

EGR Flow Rate (%)

B
SF

C
 Im

pr
ov

em
en

t (
%

)

Packaging:  Excellent
–

 

Heat Exchanger:

 

0.25 ft3

 

core
–

 

Turbo:

 

~ 2”

 

compressor

Performance:  Low-Moderate
–

 

At 20 -

 

40% EGR:  
+ ~2 -

 

4% w/ 80% turbomachinery
+ ~1.5 -

 

2.5% w/ 74% turbomachinery 

Technical Developments –
 

HECC HPL EGR Waste Heat Recovery
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Rankine

 

Cycle
System Capability Evaluation

SH

Ambient

Stack

Engine C15

A/C

Comp Turb

DPF

EGR

Brake
Power

TurbPump

El
e

ct
ri

ca
l

P
ow

e
r

Flywheel 
Motor/Generator

GEN.

Rankine Cycle

EV

Cond
RC

SH

Ambient

Stack

Engine C15

A/C

Comp TurbTurb

DPFDPF

EGR

Brake
Power

TurbTurbPumpPump

El
e

ct
ri

ca
l

P
ow

e
r

Flywheel 
Motor/Generator

GEN.GEN.

Rankine Cycle

EV

CondCond
RCRC

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

20 25 30 35 40 45

% EGR

B
SF

C
 Im

pr
ov

em
en

t (
%

)

Packaging:  Challenge
–

 

Multiple heat exchangers

Performance:  Moderate-Good
–

 

+ 3-6% depending on EGR rates  

660degC

680degC

Exhaust temp
640degC

Assumptions:
–

 

Turbine efficiency 80%
–

 

Pump efficiency 65%
–

 

R245fa working fluid
–

 

Transmission Efficiency: 90%

Technical Developments –
 

HECC HPL EGR Waste Heat Recovery
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Summary

Significant progress made toward program objectives:

With LPL CGI, turbocompound + high efficiency turbos provides 
+4% BSFC w/ 20kPa aftertreatment backpressure.

Progress on supporting technologies, especially turbine 
technologies, suggests performance target can be met

Waste heat recovery for future HECC engine solutions prompts 
consideration of HPL and HPL-LPL EGR configurations

–

 

Turbocompound still effective for stack recovery.  Benefit 
dependent on aftertreatment backpressure, required EGR rates

–

 

Brayton

 

cycle offers moderate benefit for HPL loop heat recovery

–

 

Rankine

 

cycle offers significant benefit for HPL loop heat recovery  
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