DEVELOPMENT OF ADECS TO MEET 2010 EMISSION LEVELS: OPTIMIZATION OF NO_X, NH₃ AND FUEL CONSUMPTION USING HIGH AND LOW ENGINE-OUT NO_X CALIBRATIONS

Michelangelo Ardanese, Raffaello Ardanese, Theodore R. Adams, Marc C. Besch, Venkata Sathi

Benjamin C. Shade, PhD Research Assistant Professor

Mridul Gautam, PhD
Robert C. Byrd Professor of Mechanical and Aerospace Engineering
West Virginia University

Matt Miyasato and Adewale Oshinuga South Coast Air Quality Management District

Introduction

- Temporary deactivation of an SCR system due to insufficient heat in the exhaust could result in doubling the tailpipe NOx emissions
- SCR technology allows for an engine to be programmed for optimum FC, which could lead to higher engine-out NOx emission levels (Low FC-High NOx calibration)
- Alternative engine maps that limit NOx levels (Low NOx calibration) must be available for engine control in the event of SCR malfunction or failure

Objectives

- To develop and validate a simple strategy-based technique, involving variation of four engine parameters (SOI, NOP, EGR, VGT) capable of minimizing the emissions and achieving FC improvements.
- To program the engine with multiple calibrations (Low-NOx and Low-FC maps) that optimize the exhaust gasses for aftertreatment applications.
- To evaluate the response of a given aftertreatment system under multiple calibrations.

ADECS Level 1: Engine-out NOx Reduction

VOLVO MY04

VOLVO MY07

Engine Output: 355 hp @ 1800 / 1360 lb-ft @ 1200 rpm

Engine Output: 339 hp @ 1800 / 1298 lb-ft @ 1306 rpm

Major changes:

Enhanced cooled EGR
Enhanced injection capability

- Larger EGC
- New overhead camshaft
- Increased piping diameter
- Strengthened gear train to accommodate the 2400 bar injection
- Venturi and delta P sensor to measure EGR flow

- New EGR mixer

ADECS Level 2: Aftertreatment for 2010

DPF system

Urea injector

SCR System

- SCR manufactured by Johnson Matthey.
- Urea pump equipped with independent custom-built controller based on urea, NO₂/NO ratio, exhaust temperature maps.

Catalyst Substrate

- The DPF is a Fleetgard compact saver equipped with DOC, temperature and pressure sensors
- A seventh injector is available for active regeneration

Experimental Set up: WVU EERL HD Test

Experimental Set up:

NOx and NH₃ Measurement System

Chemiluminescent analyzer

- Chemiluniscent analyzer for wet measurement of NOx and NO;
- Eco-Physics CLD822CMh

NDUV analyzer

- NDUV analyzer for simultaneous measurement of wet NO/NO₂/NH₃
- Limas-11 HW equipped with sample processing system

Methodology: Calibration generation

Low-NOx =>High EGR / High NOP

Engine Parameters	Level 1	Level 2	Level 3
EGR	Baseline	+	+ +
VGT	-	-	Baseline
SOI	-	Baseline	+
NOP	Baseline	+	+ +

Orthogonal matrix

	NOP	VGT	EGR	SOI
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2	1	2	3
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	3	2	1	3
9	3	3	2	1

Methodology: Evaluation of the Exhaust Aftertreatment System Response

ADECS Requirements:

- NOx engine-out emissions: 1 g/bhp-hr, achieved with Low NOx calibration
- Development of DPF-SCR exhaust aftertreament system for 2010 emissions levels

Generated different engine calibrations:

- Low-NOx / Low-PM
- Low-NOx / High-PM
- Low-NOx / Low-FC
- Low-FC

Evaluated the DPF/SCR system over three engine calibrations:

- Transient (FTP) and steady state (ESC) cycles
- Emissions measurements at three different sampling locations (Engine-out, DPF-out, SCR-out)

Results: Low NOx Calibration, ADECS Results

Results: Low NOx Calibration, Emission Levels

Low -NOx calibration meets ADECS requirements

	NOx	PM	НС	СО	CO2/1000	FC/100
	g/bhp-hr	g/bhp-hr	g/bhp-hr	g/bhp-hr	g/bhp-hr	g/bhp-hr
Engine Out	0.93	0.074	0.08	0.78	0.531	1.67
DPF Out	0.95	0.001	0	0.01	0.535	1.68
SCR Out	0.19	0.001	0	0.01	0.538	1.69

Results: Low-NOx Calibration, Test Cycles

 Emission levels are not engine cycle dependent: Low-NOx exhibited comparable emissions over the ETC cycle, even though it was realized based on ESC and FTP test data

Test Cycle	NOx	
	g/bhp-hr	
ESC	1.03	
FTP	0.93	
ETC	1.16	

Results: Low-NOx Maps Comparison

 Two calibrations targeting NOx emissions at different PM levels (steady state)

Calibrations	NOx (g/bhp-hr)	PM (g/bhp-hr)
Baseline	1.12	0.03
Low-NOx/Low-PM	0.98	0.07
Low-NOx/High-PM	1.03	0.3

Calibrations compared to the baseline

Results: Exhaust Aftertreatment System Response, DPF Loading

•Calibration at higher PM level lowered NO₂/NO ratio, due to DPF passive regeneration

Low-NOx Calibrations Comparison

Results: Calibrations Comparison, Low-NOx / Low-FC

Emission levels for the three different calibrations (steady state)

	NOx (g/bhp-hr)	FC (g/bhp-hr)
Baseline	1.12	166
Low-NOx	0.98	168
Low-NOx/Low-FC	1.00	160
Low-FC	2.08	158

Calibrations compared to the baseline

FC

Results: Exhaust Aftertreatment System Response, NO₂/NO ratio

NO₂/NO-Ratio

Results: Exhaust Aftertreatment System Response, Exhaust T

Results: NH₃-Slip and Urea levels

Results: NH₃-Slip Due to Catalyst Temperature Ramp

NO_x-Emissions and NH₃-Slip for different urea injection levels FTP

Conclusions

- The low-NOx calibration could replace the low-FC map during engine operation involving low loads for extended periods (JE05, first 600 sec of the US FTP), as it increases the SCR efficiency, lowers engine-out NOx and raises the exhaust temperature
- The technique was found to be quick, simple and efficient; significantly lower number of tests was required, and only four engine parameters were engaged
- Calibrations even more robust and insensitive to variations, that are likely to occur during in-field applications, can be obtained by implementing noise factors in the orthogonal matrix
- Multiple calibrations can be engaged as the thermodynamic conditions of the exhaust gases change during the engine operation; calibrations could target more specific parameters of exhaust aftertreatment system performance (exhaust temperature, urea level, NO₂/NO ratio, frequency of DPF regeneration)

Acknowledgements

- Funding and equipment provided by:
 - South Coast Air Quality Management District
 - Volvo Powertrain North America
 - California Air Resources Board
 - U.S. Department of Energy

