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Product Attributes Influenced by c
Combustion Strategy

= Significant fuel economy improvement
= Customer driven
= egislative initiatives

= Vehicle heat rejection

= Substantial increase in power density*
= Hybrid powertrain integration
= Vehicle electrification
= Engine downsizing

= Cost
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*Power Density = power/weight
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Historical Perspective of HD Brake e
Thermal Efficiency

60

HECC DoE Effort
Advanced Mixed Mode Combustion
Air Handling (Air on Dem4NdVHI&8 #&wm&&&septs
HPCR Fuel System Technology
Sensors / Controls Development \
Q'

S
N
|

N
o
|
\

iN
(3]
|

NN
o
T T m T } T T T T T T T T T

Brake Thermal Efficiency (%)

35 | | | | |
1985 1990 1995 2000 2005 2010 2015

Innovation You Can Depend On

3




Technology Roadmap
for Efficiency Improvement
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Achieving a Wide Range of Engine Out NOx Capability

-

EGR+DOC+DPF 2007 Engine
In-Cylinder NOx Control + +
EGR+DOC+DPF SCR scrR  DPF+SCR
ﬁ | | .|
EGR:System + Combustion System + Air Handling ’
2 |
A
Robustness \\\;\ A=0.01 | T
Advanced Fuel Injection System + EGR System + Controls _é-
| | 2
D~ \ ........................................ .2.9.9.7(..'.-:.ngins..F.ys!.f..enﬁﬂme.t.ign. o
o~ N~ 5 LUIS
: \ - - " " m
v\\¥§wdlmg + Sensors + Calibration
_ “ NN - e R R ‘
< Rl . Low AP, High Flow Rate EGR + VVA - Simulated : -
N e Y Engine Qut PM Level
< AR % Assuming DPF
ko)) % 257k fuieieiehuts feleiehefbebebebebetbebebel Rl - e s e
= A=0.1 3 ,’.“:.'0, “0 D —
% \V te. ..":.’:‘.‘
) % 'S ,.. '...‘.'.'...l......
m B .------......_._._.'.""-'-'.'.'.'j_l_llinu. —
0.0 : SCR NOx Conversion Efficiency 82%-86% 87%-92% || >92%
0.0 0.2 0.4 0.6 0.8 1.0 1.2
BSNOXx [g/hp-hr] 5

Innovation You Can Depend On



LTC — Advanced
Combustion

Smoke < 0.4 FSN Power DenSity c

Mixed Mode Diffusion
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TORQUE (ft-lbs)

Combustion Strategy for Fuel
Economy Improvements
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TORAQUE (ft-lbs)

Extending the Range of Early PCCI
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Challenges for Full Engine Operatione

in PCCI Combustion
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Light Load
» Combustion Nois&
« Efficiency (UHC and CO)
» Controls (Mode switching and stability)
» Mixture

High Load

» Rate of pressure rise

» Controls (Mode switching and stability)
» Mixture preparation

*EGR rates and vehicle cooling

preparation
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Extending the Engine Operation Range of PCCI
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Extending the Engine Operation Range of PCCI

Late PCCI limits fuel economy
improvement potential and robustness
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Extending PCCI Com
with VVA
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Challenges for Lifted Flame Combustion

= Creating desired intake valve closing conditions
=A/F, EGR, IMT

= Fuel injection system technology
= [njection pressure
= Nozzle configuration

Lifted Flame Diffusion
Controlled

B

SPEED (rpm)

= Fuel injection plume to plume
iInteraction

TORAQUE (ft-lbs)

= Combustion surfaces
= Difficult to scale to smaller bore engines

= Controls development for transient operation 14
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Creating Lifted Flame Combustion e
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fsDPM (g/kg fuel)

Advanced Lifted Flame Combustion e
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Achieving High Efficiency Combustion
with a Wide Portfolio of Fuels

= Wide variety of fuel types
= Engines designed and sold for a global market

= Mixed mode combustion

- Virtual and Real Sensor

= Robustness of operation Exploration

= Maintain fuel efficiency gains

= Exploit fuel properties for performance improvements

17
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Exploration of Fuel Properties on
HECC*

= Use transient engine operation as key data sets for
understanding impact of fuel properties on HECC

= Explore the impact of fuel type over a variety of
advanced combustion modes

= Characterize the fuel compounds and properties
 Challenging for heavy fuels

= Explore real and virtual fuel quality sensor technology for
engine integration

= Development of kinetics mechanism for analysis

» CFD analysis — primary way to generalize key combustion

knowledge gained from external collaborations
18
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Frequency distribution of Cetane
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Biofuels Sensing e

Virtual Sensor Technology
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Summary

= Mixed mode combustion can achieve a wide range of
engine out NOx (20.2 g/bhp-hr)
= Select the right technology for each application

= Development and integration of component technologies
are key enablers

= Additional technology exploration needed to achieve greater
emission robustness and fuel economy at 0.2 g/bhp-hr engine
out NOx

= Advanced combustion strategies are being explored to promote
lifted flame combustion and extended range PCCI combustion

= Virtual and real fuel sensors are enablers for robust
performance while maintaining high efficiency as fuel
properties variation increases

22
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Variable Swirl - Emissions e
Robustness
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