Innovation You Can Depend On™

■您可信赖的创新 ■ L'innovation

Sur Laquelle Vous Pouvez Compter

■ 期待に答える技術革新 ■

Innovación En La Que Usted Puede

Confiar ■ 신뢰할 수 있는 혁신

■ Inovação Que Você Pode Confiar

Technical Excellence.

Advanced Combustion Technology to Enable High Efficiency Clean Combustion

Donald Stanton Research & Technology

August 4th, 2008

Product Attributes Influenced by Combustion Strategy

- Significant fuel economy improvement
 - Customer driven
 - Legislative initiatives
- Vehicle heat rejection
- Substantial increase in power density*
 - Hybrid powertrain integration
 - Vehicle electrification
 - Engine downsizing
- Cost

Historical Perspective of HD Brake Thermal Efficiency

Technology Roadmap for Efficiency Improvement

Variable
Valve
Actuation

Fuel System

Advanced LTC

Va

Integration of Cummins Component Business Technologies in a Cost Effective Manner

EGR Loop

6.7L ISB

15L ISB

Electrically Driven
Components

Turbo Technology

Aftertreatment

Hybrid/WHR

2.5

BSN0x [g/hp-hr]

4.0

8.0

Can Depend On

0.2

1.2

7

TORQUE (ft-lbs)

Extending the Range of Early PCCI

Mode	Advantages	Disadvantages
Early PCCI	- Good stability - Good fuel consumption	- High peak cyl. pressure- Limited BMEP- Noise- Higher cooled EGR rates
Late PCCI	Low peak cyl. pressureHigh BMEP capability (20 bar)Low noise	Narrow stability rangeHigher fuel consumptionNeeds combustion sensor

Challenges for Full Engine Operation in PCCI Combustion

Extending the Engine Operation Range of PCCI

Combined Early and Late PCCI

0

0.2

0.4

0.6

0.8

1.2

fsNOx (g/kg)

o 20 bar

1.4

Reducing HC and CO for Early PCCI

Images Courtesy of Mark Musculus - SNL

Extending the Engine Operation Range of PCCI

Combined Early and Late PCCI

Extending PCCI Combustion with VVA

Challenges for Lifted Flame Combustion

- Creating desired intake valve closing conditions
 - A/F, EGR, IMT
- Fuel injection system technology
 - Injection pressure
 - Nozzle configuration
- Fuel injection plume to plume interaction

SPEED (rpm)

- Combustion surfaces
 - Difficult to scale to smaller bore engines

Controls development for transient operation

Creating Lifted Flame Combustion

Conventional Diffusion Combustion

Lifted Flame Diffusion Combustion

Advanced Lifted Flame Combustion (Scales well for smaller bore engines)

Advanced Lifted Flame Combustion

Achieving High Efficiency Combustion with a Wide Portfolio of Fuels

- Wide variety of fuel types
- Engines designed and sold for a global market
- Mixed mode combustion
- Robustness of operation
- Maintain fuel efficiency gains

Virtual and Real Sensor Exploration

Exploit fuel properties for performance improvements

Exploration of Fuel Properties on HECC*

- Use transient engine operation as key data sets for understanding impact of fuel properties on HECC
- Explore the impact of fuel type over a variety of advanced combustion modes
- Characterize the fuel compounds and properties
 - Challenging for heavy fuels
- Explore real and virtual fuel quality sensor technology for engine integration
- Development of kinetics mechanism for analysis
 - CFD analysis primary way to generalize key combustion knowledge gained from external collaborations

fsNOx, gisfc, smoke, etc = f(engine parameters) + f(fuel properties)

Biofuels Sensing

Virtual Sensor Technology

Courtesy: Professor Shaver – Purdue University

Summary

- Mixed mode combustion can achieve a wide range of engine out NOx (≥0.2 g/bhp-hr)
 - Select the right technology for each application
- Development and integration of component technologies are key enablers
- Additional technology exploration needed to achieve greater emission robustness and fuel economy at 0.2 g/bhp-hr engine out NOx
 - Advanced combustion strategies are being explored to promote lifted flame combustion and extended range PCCI combustion
- Virtual and real fuel sensors are enablers for robust performance while maintaining high efficiency as fuel properties variation increases

Variable Swirl – Emissions Robustness

