Geothermal Technologies Program 2010 Peer Review

May 19, 2010

Stephen Bauer Sandia National Laboratories

High Temperature Tools and Sensors, Down-hole Pumps and Drilling

Overview

- Project Overview
 - Timeline
 - Project start date FY 2010, Project end date FY 2012
 - Currently 2% complete
 - Budget
 - ARRA project funded by DOE Geothermal
 - Funds received \$588,600
 - Total 3 year budget \$1,889,000 (plus some industry cost share)
 - Barriers
 - None Identified
 - Partners
 - TBD

Relevance/Impact of Research

Evaluation/Application of Mature Drilling Technologies from other Disciplines to Geothermal Industry

- Faster drilling rates
- Short term realization of cost savings in geothermal drilling
- Improved Bit Life (Flat time reduction)
- Formation Drillability
 - PDC bits drill ductile and brittle formations
 - Potential for transition to multilateral completions using technology used in O&G applications
- Hard rock drilling alternative to existing technology
- Safety
 - R&D100 Award for PDC bits attributed to use of lighter weight BHA

Relevance/Impact of Research

Project objective

 Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

"Modification, improvements and field-testing of demonstrated technologies for high-temperature geothermal drilling applications."

Scientific/Technical Approach

Approach

- Review available technologies (i.e. percussion hammers, PDC bits, hybrid bits, mud hammers, and turbo drills)
- Select Two Candidate Options
- Field test (Secure industry partner with wells)
- Evaluate results (Determine failure mechanisms)
- Manufacture and Implement Modifications
- Field Test / Evaluate Results
- Realize Benefits

Milestones

- Year 1: Complete Initial Field Trials
- Year 2: Implement Design Changes from Initial Field Trials
- Year 3: Complete and analyze results of follow-on Field Trials

Accomplishments, Expected Outcomes and Progress

- Utilize commercially available technologies in geothermal
- Leverage SNL drilling technology testing and evaluation experience to geothermal
 - Experimental drill rig
 - Drilling laboratory
 - Concurrent rapid drilling projects

Project Management/Coordination

- Schedule
 - Schedule based on previously discussed milestones
 - Currently 2% complete, (review of current technologies)
- Application of resources
 - Sandia Geothermal Department
 - Leverage programs funded by non-DOE sponsors
- Coordination with industry
 - Industrial partner needed; contacts initiated

Future Directions

- Deployment strategy/ future research.
 - Publish/advertise results (GRC, etc)
 - Link advanced drilling system designs to geothermal needs
 - Results may warrant additional "needs"
 - For example materials development
 - Encourage deployment if successful

Summary

- Planned work publicly advertised
- Initial contacts with industry made
- Remaining tasks:
 - Secure industry partner for wells of opportunity now and two years out
 - Select industry partners for drill method technologies
 - Complete Phase 1 testing
 - Analyze results, engineer improvements
 - Complete Phase 2 testing
 - Publish results/realize benefits in geothermal drilling