

Public support for geothermal in Switzerland – national ...

Estimated Monetary Value of a Project (EMV)

=

Probability of Success (POS) * NPV_{success}

Probability of Failure * NPV_{failure}

Installed Capacity (P _{el})	Feed-in tariff (Rp./kWh)
≤ 5 MW	40.0
≤ 10 MW	36.0
≤ 20 MW	28.0
> 20 MW	22.7

= P(OS*NPV _{success}	
	+ (1-POS)*N	PV

Federal risk guarantee: CHF 150 million (up to 50% of sunk subsurface project development cost may be reimbursed)

Federally sponsored R&D and funds for pilot and demonstration projects

- Swiss Fed. Office of Energy (dominant)
- Swiss Nat. Science Foundation
- ETH Domain
- CTI Swiss Innovation Promotion Agency

1

... and international: IPGT membership

5 Countries:

Australia, Iceland, New Zealand, Switzerland and the United States (280 funded EGS and EGS-relevant R&D projects)

Purpose:

Accelerate the development of geothermal technology through international cooperation.

Focus on EGS to develop effective methodologies and practices.

7 Working Groups:

- Lower Cost Drilling
- High Temperature Tools
- Modeling

- Zonal Isolation
- Stimulation Procedures
- Exploration Technologies
- Induced Seismicity (Switzerland is lead convener)

International

Technology

Learning from EGS project at Basel to build tools for project developers and operators

Challenges "Hydrothermal Spallation Drilling"

Combustion in pressurized and aqueous environment

- Flame ignition and operation
- Design burning chamber
- Alternating heating/cooling

Fluid Dynamics

- Heat loss trough entrainment
- Injection of cooling water
- Injection of water/flame jet
- Injection of drilling fluid

Particle Transport

- In treatmeant zone
- In annular zone

Heat Transfer from Jet to Rock

- Heat transfer coefficients from supercritical water jets to rock
- Influence of operational parameters (distance to rock, jet velocity, temperature,...)
- Estimation of spallation performance and efficiency

Challenge: EGS multiple completion

