

Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

May xx, 2010

Principal Investigator
Dr. Mark Lowell
Draka Cableteq USA

Track Name

Overview

Timeline

- January 2010 to October 2012 / 2 % complete

Budget

Total project funding: \$4,224,391

– DOE share: \$ 3,222,398 86.3 %

Awardee share: \$ 1,001,99323.7 %

Funding received: None

Barriers

- Hydrogen resistant optical fibers
- High temperature (> 300 deg. C) optical fiber coating
- High temperature (> 300 deg. C) cable materials

Partners

Draka Communications Sandia Labs SensorTran

Tetramer Technologies PermaWorks Omnisens

AltraRock

Relevance/Impact of Research

Objectives

- 1. Optical fibers that resist hydrogen "darkening" for several months instead of hours and days at 300 deg. C and higher
- 2. Tube encapsulated cable (TEC) construction that functions as a distributed temperature sensor (DTS) and a power source for a downhole pressure sensor
- 3. Demonstration of temperature and pressure monitoring in a geothermal well
- 4. Evaluate fiber sensors with both Raman and Brillouin DTS instruments

Relevance/Impact of Research

Potential Benefits

- Reliable distributed temperature sensor
- More accurate monitoring of well conditions: temperature and pressure
- Higher well productivity
- Other applications: oil and gas wells

Innovative aspects

- Finely controlled optical fiber chemistry
- Unique fiber coating chemistry
- Fiber in metal tube process technology
- Tube encapsulated cable technology

Project Organization – Technical

- Phase 1 Optical Fiber Development
- Phase 2 Cable Development
- Phase 3 Cable Testing and Validation

Phase 1 Tasks and Deliverables

- Task 1 Fiber Development
 - Hydrogen-insensitive fibers laboratory testing
 - Hydrogen-insensitive fibers with a high temperature coating for geothermal down-hole testing
- Task 2 Coatings Development
 - Design and synthesis of novel high-temperature polymers.
- Task 3 Fiber Testing and Validation
 - Validate hydrogen resistance of the optical fibers

Phase 2 Tasks and Deliverables

- Task High Temperature Fiber in Metal Tube (FIMT)
 - Optimized FIMT construction and manufacturing process
- Task 2 High Temperature Cable Development
 - Produce four trial lengths of 22 AWG twisted pair cable
 - Validate that this cable can conduct 30mA.
- Task 3 –Tube Encapsulated Cable (TEC) Development
 - Confirmation of final design and process capabilities
 - Two or more cable prototypes for well deployment

Phase 3 Tasks and Deliverables

- Task 1 Short Term Downhole Tests
 14 days
- Task 2 Medium Term Downhole Tests 41 days (1000 hours)
- Task 3 Long Term Tests
 12 months

Accomplishments, Expected Outcomes and Progress

Qualifications -- Draka

- Draka Cableteq USA
 - Downhole cable specialist
 - Welded metal tube cable manufacturer
 - Fiber sensor testing lab
- Draka Communications
 - Optical fiber specialist
 - Optical fiber manufacturer
 - FIMT manufacturer

Accomplishments, Expected Outcomes and Progress

Qualifications -- Partners

Tetramer Technologies: high temp. polymers specialist

Sandia Labs: hydrogen testing of fibers

SensorTran: supplier of Raman type DTS instrument

Omnisens: supplier of Brillouin type DTS instrument

PermaWorks: supplier of downhole tool

AltraRock: geothermal well operator

Accomplishments, Expected Outcomes and Progress

Accomplishments

new project, just started work

Planned accomplishments/outcomes

- A reliable downhole temperature and pressure monitoring tool
- Determination of the maximum operating range above 300 deg. C using new techniques developed
- A clear understanding of the technical issues and recommendations for further work

Project Management/Coordination

Project Management Plan

- Project Teams by Phase
 - Microsoft Project plans created for each Draka participant
- Project Website
 - Project dashboard
 - Store project plans and updates
 - Store technical reports
 - Store expense records
- Spend Management
 - Budget detailed by tasks and by expense type
 - Templates used to collect and consolidate expenses

Project Management/Coordination

Project Dashboard

Last updated: April 21, 2010	Due Date	% Complete	Time Behind	Status
Phase 1: Development of High Temp Fiber	Oct 27, 2011	5%	35.55	
Task 1: Fiber Development	May 6, 2011	10%	0 00	
Task 2: Coating Development	Jan 17, 2011	5%	97 111	
Task 3: Fiber Testing and Validation	Oct 27, 2011	0%	78 <u>482</u>	
Phase 2: Cable Development	Aug 15, 2011*	3%	877	
Task 1: FIMT Development	Aug 15, 2011*	0%	9 .44	
Task 2: High Temp Cable Development	Oct 7, 2010	10%	87 <u>00</u>	
Task 3: Metalclad Cable Development	Apr 4, 2011*	0%	39 <u>585</u>	
Phase 3: Cable Testing and Validation	55 8	0%	8 71	•

[●] In Progress ● Behind Schedule ● Critically Behind Schedule ● Not Started

^{*}Date represents the end of development and testing related to Phase/Task. Production and testing of final product with optimized fibers will go beyond these dates.

Project Management/Coordination

Schedule

Months	Activities	Budget
1 to 6	Preliminary fiber & cable development	\$ 1,824,333
7 to 12	Advanced fiber & cable development	\$ 1,361,574
13 to 34	Final cable development & downhole trials	\$ 1,038,485

Upcoming Milestones

- Test plan for hydrogen testing at Sandia Labs
- Fiber prototypes for hydrogen testing
- Fiber draw trials with initial samples from Tetramer Tech.

Talented technical team

- Specialty fiber optics development, testing, and production
- Downhole cable and tool development and production
- Geothermal well operation and monitoring.

Thorough Project Management Plan

Important Well Productivity Tool

The improved temperature and pressure monitoring will allow more productive geothermal well performance.