
#### **Geothermal Technologies Program**

Validation of Innovative Exploration Technologies

May, 2010 Peer Review



Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Richard Ellis, Princ. Inv. Presco Energy, LLC

# **Project Overview**

#### > Timeline:

Start Date: January 29, 2010End Date: December 31, 2011

> Percent Complete: 2%

#### > Budget:

> Total: \$4,211,229

DOE share: \$2,277,081Presco share: \$1,934,148

#### Funding for FY 2010: \$2,045,145

DOE share: \$1,244,039Presco share: \$801,106

> **Barriers:** permitting, dynamic cooling of wellbores, re-entry/deepening of existing wells

#### > Partners:

- APEX/HIPoint Reservoir Imaging (VSP, processing)
- Optim, LLC (surface seismic, processing)
- > ThermaSource/Drlg Contractor (drilling, testing)
- > UNR-Louie (seismic interpretation)
- Waibel, Blackwell (interpretation)

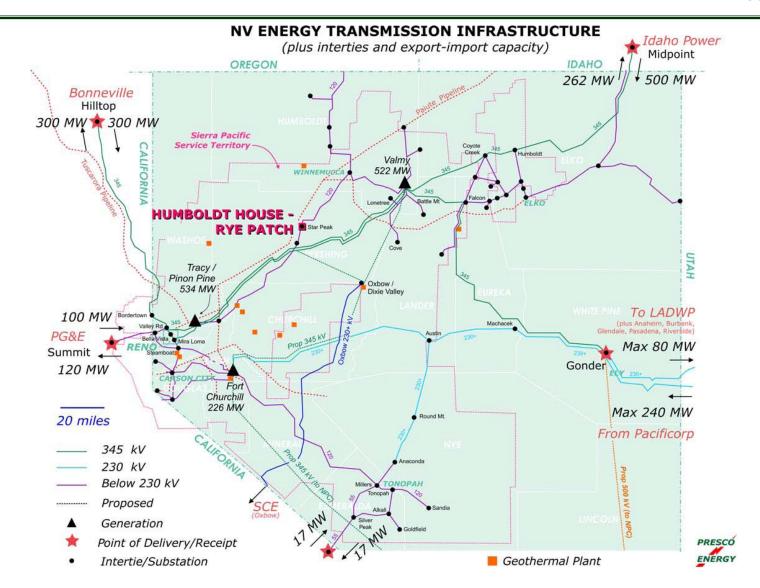
### Relevance and Impact of Research

#### Objective:

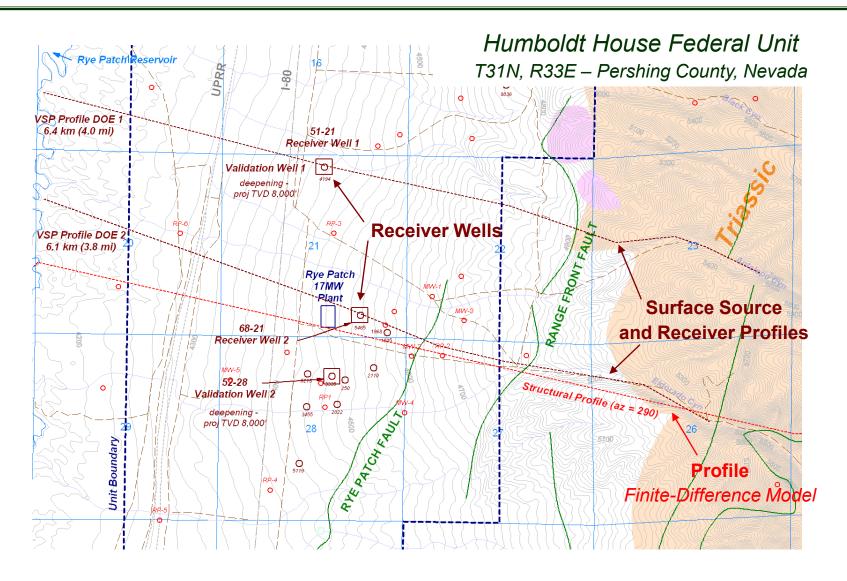
>A novel 2D VSP imaging technology and patented processing techniques will be used to create accurate, high-resolution reflection images of a classic Basin and Range fault system in a fraction of previous compute times

#### Impact:

>Fundamentally, the technology is being used to reduce targeting risk in fault-controlled geothermal systems, reducing finding and development (F&D) costs. Lower F&D costs augur lower levelized costs of geothermal power.

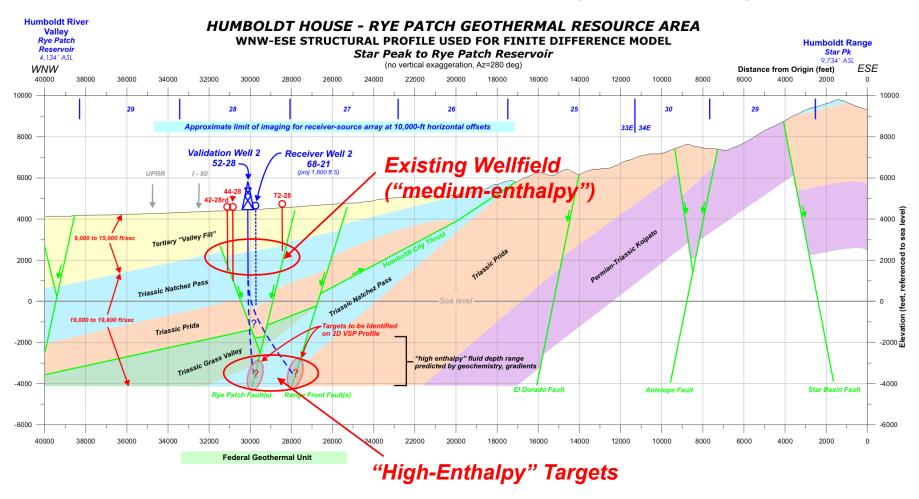

#### Innovation:

- >Dynamic wellbore cooling using coiled-tubing will facilitate the use of this technology in a variety of geothermal environments
- >Multicomponent geophones convert analog signal to digital signal onboard, which is then transmitted digitally to the surface, reducing noise and data loss
- >Fiber-optic wireline permits vastly larger bandwidth and data volumes to be transmitted to the surface in real-time
- >Long vertical and horizontal apertures permit greater signal recovery below the Valley Fill, based on synthetic, finite-difference modeling of the range front geometry
- >Patented upward continuation of the wavefield permits use of robust, time-domain processing algorithms (deconvolution, statics, NMO, amplitude, etc), greatly reducing compute times and improving the reflection image

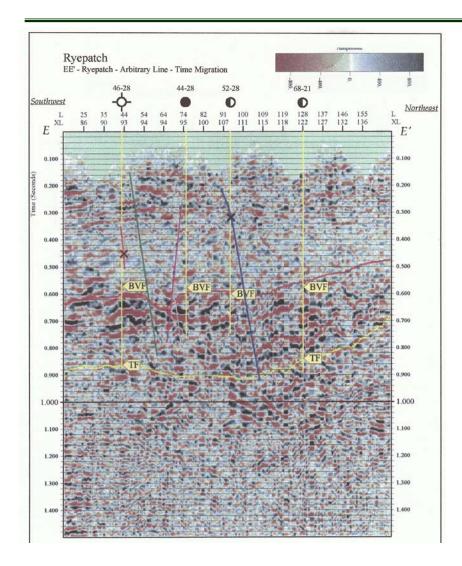

# Project Scientific and Technical Approach

- Project, located in a classic Basin and Range setting, heretofore plagued by high exploratory and development risk
  - Limited, medium-enthalpy resource developed (approx 6 MW)
  - Prior resource development, based on poor reservoir characterization, failed due to inconclusive subsurface information and very poor seismic imaging
- New LIDaR and high-resolution aeromagnetic data, along with prior gradient holes, reservoir tests and extensive surface and geochemical work, suggest the Range Front model clearly operative, chemical temperatures of 500-525 deg F present, and up to 8 miles of faulting prospective for ultimate development
- How can we improve targeting of the high-enthalpy resource and thereby manage finding and development costs?

# Area of Investigation - Regional




# Area of Investigation - Project



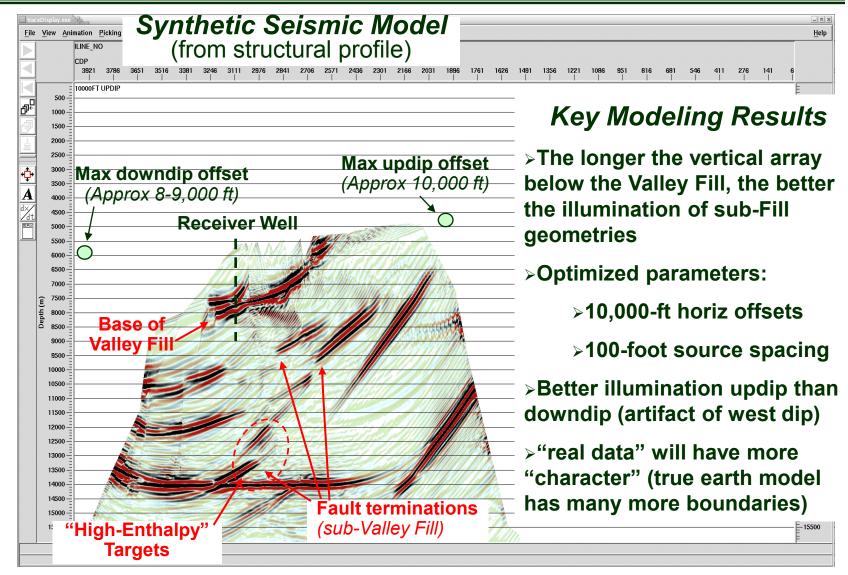

### Structural Profile

#### Block Model used for Finite-Difference Modeling of Seismic Response



# "Old Technology"




# Surface Seismic Profile (3D, 1997)

- >Same area of DOE profiles
- Very poor energy penetration below Valley Fill (VF)
- >VF lithologies alternately absorptive or dispersive (clays, tuffs, boulders, etc)
- >Poor first breaks and static solution
- > Distorted raypaths
- Very poor "interpretibility"

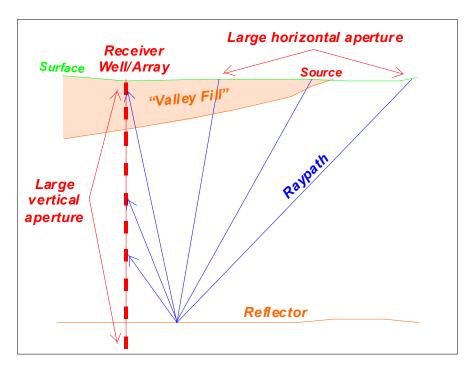
# Project Scientific and Technical Approach

- Finite-difference forward model of the Range Front at the site confirms the feasibility of reflection imaging below the Valley Fill
- Strong west dip of formations and Range Front faults at Humboldt House presents a logistical challenge, requiring long offsets
- The VSP profiling technique of HiPoint Reservoir Imaging was optimized for implementation in this environment
  - Extended vertical and horizontal apertures facilitate higher resolving power: higher multiplicity, higher frequency
  - Surface seismic will be recorded along the VSP profiles for comparison and refinement of velocity models

# Finite-Difference Modeling

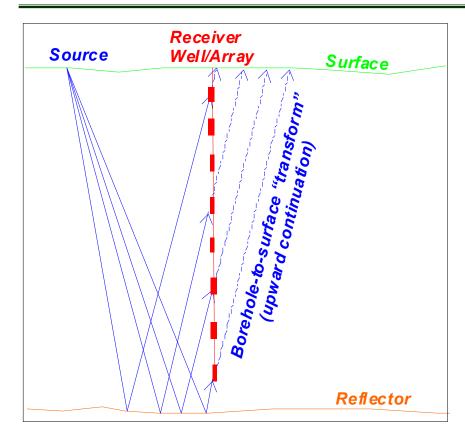


### Innovation – Equipment



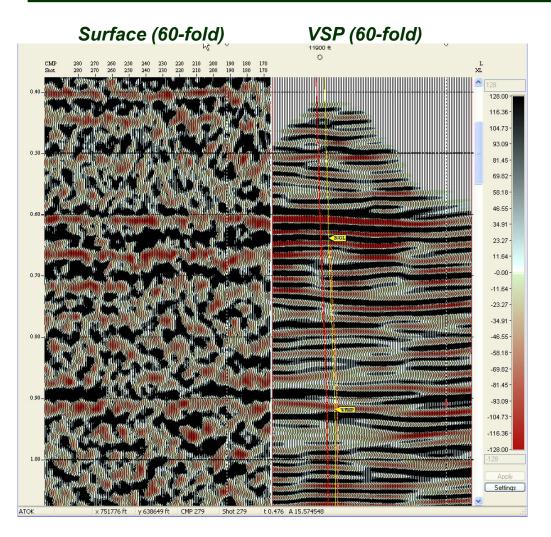

- >3-Component Geospace DS-150 Geophone
  - >Lightweight, digital, wall-locking
  - >Signal digitized onboard, then transmitted digitally
    - > Dramatically reduces noise and data loss
- > Deployed on fiber-optic wireline
  - >Sufficient bandwidth (unlike copper) to transmit all data realtime
- > Drawback: temp limit of 270 deg F

Vertical array deployed from wireline truck
Uses crane-supported wheel
Make-up at approximately 1 minute per level
Deploys at 30 meters per minute



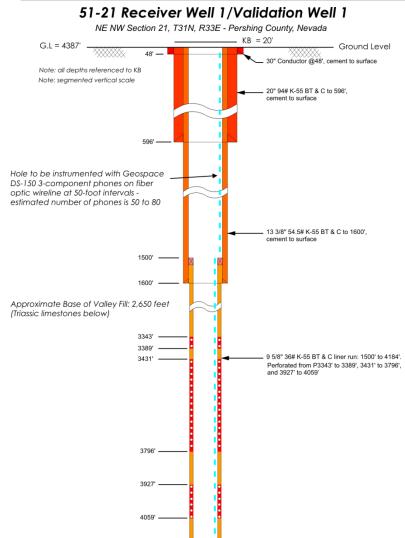

### Innovation – Field Acquisition and Deployment




- >Large, spatially dense vertical aperture
  - >Large number of multicomponent phones up to 4,000 feet
  - >Deployed on lightweight, fiber-optic wireline
  - >High-volume, high-bandwidth
- >Large, spatially dense horizontal aperture
  - > Vibration points at 110-foot spacing
  - >Up to 10,000 feet either side of receiver well
- >High-multiplicity, high-frequency
- >Surface seismic data will be recorded for comparison to borehole data

### Innovation – Processing



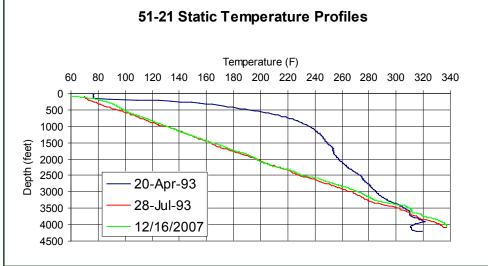

- >Borehole seismic data are transformed to surface seismic data using patented upward-continuation of wavefield
- > Facilitates use of powerful surfaceconsistent, time-domain algorithms – statics, decon, NMO, amplitude
- >Processing flow occurs in fraction of previous (borehole seismic) compute times

# Expected Outcome – Surface vs Borehole Seismic



- >Both datasets acquired in same location in W Texas
- ➤ Near-surface known to create high-amplitude reverberations, absorbing energy and compromising reflection quality
- >VSP relatively unaffected because receivers deployed below "trapping zone"
- >Frequency content of VSP data at least twice that of surface data

### Receiver and Validation Wells




# >Well to be instrumented with up to 80 geophones (at 50-ft intervals)

>Up to 35 geophones below Valley Fill

#### >Well to be used for validation (Phase II)

- >Large-diameter to TD (4,193 ft)
- ➤ Conductive gradient to TD (7.6 deg/100 ft)
- >Reach 400 deg F at 800 ft below TD
- >Reach 500 deg F at 2,200 ft below TD



4184'

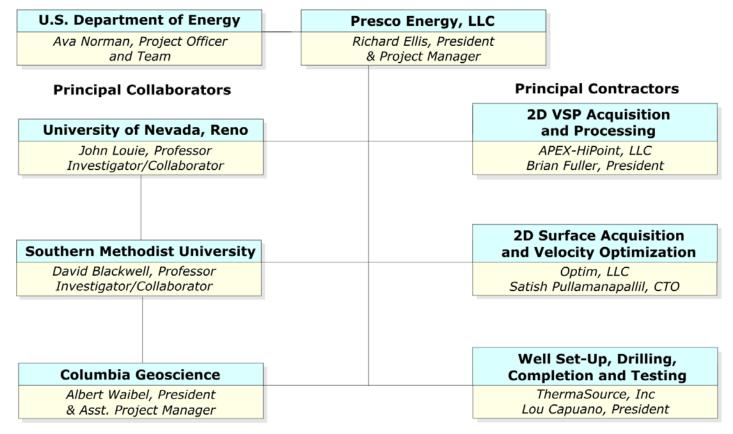
### >Phase I – underway as of January 29, 2010 start date

#### > Task I: Wellbore Re-Heat Tests Complete

- Purpose: ensure wellbore temperature at least 10% below sensor (geophone) limit of 270 deg F
- Protocol: Cold water pumped into receiver wells 51-21 and 68-21, temperature logged to TD
- Conclusion: Even with adequate surface pressure, cannot displace hot water at depth from surface
- New protocol developed for "dynamic cooling":
  - > coiled-tubing (CT) unit will displace hot water at TD in both receiver wells
  - > receivers and fiber line will then be "strapped" to CT and deployed to depth
  - survey will proceed, CT will be used to pump in cold water, temperature will be monitored with onboard sensors

#### > Task I: Permitting (in progress)

- Purpose: meet NEPA and archaeological/cultural permit requirements for seismic survey
- Protocol: cultural resource management firm deployed to survey seismic profiles for historic/prehistoric sites, inventory and record sites for BLM
- Expected outcome: profile locations will be adjusted to avoid impacts to cultural and species sites
- > Timing: permit approval expected by end of May, 2010

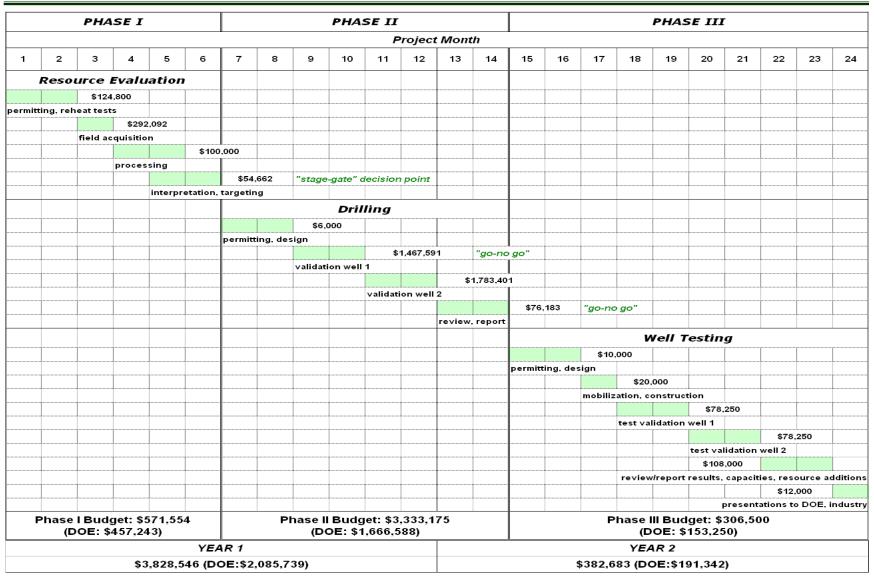

- Phase I tasks (total duration, with overlaps, of 6 months)
  - Permitting, wellbore-re-heat tests: 2 months
  - > Field Acquisition: 1 month
  - Processing: 2 months
  - Interpretation, Modeling, Targeting: 2 months
  - Key Milestone/Decision Point:
    - > Interpretation and Targeting: does the reflection image identify a specific element of the Range Front geometry e.g. fault intersection at high-enthalpy depth that is appropriate for targeting from the existing wells?
      - If no target identified, is there additional processing/interpretation required?
      - If no target achievable from one of the existing wells, is the second well usable?
      - > If neither well usable, what new location is required and can it be substituted?
- Phase II tasks (total duration of 4 months)
  - > Permitting, wellwork final design/costing: 2 months
  - Initial validation well 51-21 drilling and completion, rig-test: 2 months
  - Key Milestone/Decision Point:
    - Result of Validation Well No. 1: does the well confirm the targeting model developed from the innovative technology?
    - > Did the well prove the existence of the high-enthalpy resource?
    - Does the well justify Validation Well No. 2?

### Project Organization and Management

#### **HUMBOLDT HOUSE - RYE PATCH GEOTHERMAL PROJECT**

Pershing County, Nevada

#### **Project Organizational Structure**




#### DE-EE0002840

"Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System"

# Project Management and Responsibilities

| Task  | Project Activity                                          | Responsible Entity(ies)        |
|-------|-----------------------------------------------------------|--------------------------------|
|       | - PHASE 1 -                                               | Resource Evaluation            |
| 1.1   | Permitting, Design and Wellbore Re-Heat Tests             | Presco, ThermaSource           |
| 1.2.1 | Field Acquisition                                         | HiPoint, Optim, Vendor         |
| 1.2.2 | Processing                                                | HiPoint, Optim                 |
| 1.3   | Interpretation, Modeling and Targeting                    | Presco, HiPoint, UNR, SMU      |
|       | - PHASE 2 -                                               | Drilling                       |
| 2.1   | Permitting, Wellwork Design and Final Costing             | ThermaSource, Presco           |
| 2.2.1 | Drill and Complete Validation Well 1                      | ThermaSource, Vendors, Presco  |
| 2.2.2 | Drill and Complete Validation Well 2                      | ThermaSource, Vendors, Presco  |
| 2.3   | Review, Analyze and Report Results of Phase 2             | Presco, ThermaSource, UNR, SMU |
|       | - PHASE 3 -                                               | Well Testing                   |
| 3.1   | Permitting, Design and Contracting of Well Testing        | ThermaSource, Vendors, Presco  |
| 3.2   | Mobilization and Construction of Test Sites               | ThermaSource, Vendors          |
| 3.3   | Test of Validation Well 1                                 | ThermaSource, Vendors          |
| 3.4   | Test of Validation Well 2                                 | ThermaSource, Vendors          |
| 3.5   | Report of Validation, Well Capacities, Resource Additions | Presco, SMU, ThermaSource, UNR |
| 3.6   | Presentation to DOE, Industry and Academic Forums         | Presco, SMU, UNR               |



# **Project Summary**

- Technology innovation directly targets a recurrent problem with seismic imaging in the greater Basin and Range
  - > If successful, will have broad areal applicability
- Project protocols Phases I, II and III can be implemented quickly and relatively inexpensively because of the extensive infrastructure at the site
- Principal drawbacks to application
  - Temperature limits of geophones (high-temperature phones limited in number)
  - > Requires existence of wellbores at strategic locations along target zone
- Principal impact of expected outcome
  - Materially reduces targeting risk and therefore lowers LCOE and finding-anddevelopment cost