Stationary High-Pressure Hydrogen Storage

Technology Gap Analysis for Bulk Storage in Hydrogen Infrastructure

Technology Development

- Develop and demonstrate the steel/concrete composite vessel (SCCV) design and fabrication technology for stationary storage system of high-pressure hydrogen that meet DOE technical and cost targets
- Address the significant safety and cost challenges

SCCV Technology

- Vessel design technology:
 - Use of commodity materials (structural steels and concretes) for achieving cost, performance and safety requirements
 - Mitigation of hydrogen embrittlement to steels especially high-strength low alloy grades
- Vessel fabrication technology:
 - Advanced, automated manufacturing process for layered steel tank
 - Embedded sensors to ensure the safe and reliable operation
- Achievable with today's manufacturing technologies and code/standard requirements

Manufacturing Cost Analysis

- Detailed manufacturing cost analysis demonstrated that the SCCV technology can exceed the relevant cost targets set forth by DOE
- Baseline SCCV design:
 - 1,500 kg of H2 (Interior volume = 2,300 ft³ @ 5,000 psi & 25° C), capable of refilling 260 passenger cars (5.6 kg H2 tank per car)
 - 50/50 load carrying ratio, 6 ft diameter, 27.5 ft height

Demonstration: Mock-Up SCCV Design

 Design, engineering and manufacturing a small but representative mock-up SCCV (1/4 – 1/5 size), capturing all major features of SCCV design and fabricatability with today's manufacturing technologies and code/standard requirements

Anticipated completion date: June, 2014.

3.83' (46"

5.5' (66")

10.93

6.33'